DOI QR코드

DOI QR Code

Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure

  • Kim, Keun-Joo (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
  • Published : 2009.04.25

Abstract

The authors fabricated a nanopatterned surface on a GaN thin film deposited on a sapphire substrate and used that as an epitaxial wafer on which to grow an InGaN/GaN multi-quantum well structure with metal-organic chemical vapor deposition. The deposited GaN epitaxial surface has a two-dimensional photonic crystal structure with a hexagonal lattice of 230 nm. The grown structure on the nano-surface shows a Raman shift of the transverse optical phonon mode to $569.5\;cm^{-1}$, which implies a compressive stress of 0.5 GPa. However, the regrown thin film without the nano-surface shows a free standing mode of $567.6\;cm^{-1}$, implying no stress. The nanohole surface better preserves the strain energy for pseudo-morphic crystal growth than does a flat plane.

Keywords

References

  1. S. Nakamura and G. Fasol, The Blue Laser Diode. GaN Based Light Emitters andLasers, (Springer, Berlin, 1997) P. 203
  2. G. S. Shin, S. W. Hwang, and K. Kim, Trans. Electr. Electron. Mater4,19(2003).
  3. K. Kim, Trans. Electr. Electron. Mater. 5 174 (2004).
  4. A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2259(1997). https://doi.org/10.1063/1.120044
  5. T. S. Zheleva, 0. H. Nam, M. D. Bremser, and R. F. Davis, Appl.Phys. Lett. 71,2472 (1997). https://doi.org/10.1063/1.120091
  6. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H.Homg, Y. S. Yu, and M. H. Pan, J. Electrochem. Soc. 153, G765(2006) https://doi.org/10.1149/1.2209587
  7. T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C.-H. Hong, E. KSuh, H. K. Cho, and B. H. Kong, Appl. Phys. Lett. 90,131107 (2007) https://doi.org/10.1063/1.2714203
  8. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C.Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, Appl. Phys. Lett. 93,081108(2008). https://doi.org/10.1063/1.2969062
  9. J. Park, J.-K.. Oh, K.-W. Kwon, Y.-H. Kim, S.-S. Jo, J. K.. Lee, andS.-W. Ryu, IEEE Photonics Technol. Lett. 20, 321 (2008). https://doi.org/10.1109/LPT.2007.915617
  10. V. A. Savastenko and A. U. Sheleg, Phys. Status Solidi A, 48, K135(1978). https://doi.org/10.1002/pssa.2210480253
  11. D. C. Look and J. R. Sizelove, Phys. Rev. Lett. 82, 1237 (1999) https://doi.org/10.1103/PhysRevLett.82.1237
  12. K. Kim and S. J. Chung, Trans. Electr. Electron. Mater. 2, 24 (2001)
  13. M. Jamil, J. R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, S.Guha, and M. Arif, Appl. Phys. Lett. 87, 082103 (2005). https://doi.org/10.1063/1.2012538
  14. L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, Appl. PhysLett. 85, 5881(2004) https://doi.org/10.1063/1.1832758
  15. T. S. Jeong, C. J. Youn, M. S. Han, J. W. Yang, and K. Y. Lim,Appl. Phys. Lett. 83, 3483 (2003) https://doi.org/10.1063/1.1623337
  16. H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald,Appl. Phys. Lett. 90, 171917 (2007). https://doi.org/10.1063/1.2732826
  17. T. Detchprohm, K. Hiramatsu, K. Itoh, and I. Akasaki, Jpn. J. Appl.Phys.31,L1454(1992). https://doi.org/10.1143/JJAP.31.L1454
  18. K. Kim and C. B. Park, Thin Solid Films, 330, 139 (1998). https://doi.org/10.1016/S0040-6090(98)00541-0

Cited by

  1. Modelling wafer bow in silicon–polycrystalline CVD diamond substrates for GaN-based devices vol.43, pp.38, 2010, https://doi.org/10.1088/0022-3727/43/38/385502
  2. Investigation of nanopatterned c-plane sapphire Substrates for Growths of polar and nonpolar GaN epilayers vol.348, pp.1, 2012, https://doi.org/10.1016/j.jcrysgro.2012.03.040
  3. Fabrications and Characterizations of InGaN/GaN Quantum Well Light Emitting Devices Including Photonic Crystal Nanocavity Structures vol.22, pp.12, 2009, https://doi.org/10.4313/JKEM.2009.22.12.1045