DOI QR코드

DOI QR Code

Aspochalasin I, a Melanogenesis Inhibitor from Aspergillus sp.

  • Choo, Soo-Jin (Functional Metabolite Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yun, Bong-Sik (Functional Metabolite Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ryoo, In-Ja (Functional Metabolite Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Young-Hee (Functional Metabolite Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Ki-Hwan (College of Pharmacy, Chungnam National University) ;
  • Yoo, Ick-Dong (Functional Metabolite Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2009.04.30

Abstract

In the course of screening for the melanogenesis inhibitors, aspochalasin I was isolated from solid-state culture of Aspergillus sp. Fb020460. Its structure was determined by spectroscopic analysis including mass spectroscopy and NMR analysis. Aspochalasin I potently inhibited melanogenesis in Mel-Ab cells with an $IC_{50}$ value of $22.4{\mu}M$ without cytotoxicity.

Keywords

References

  1. Baek, S. H., D. H. Kim, C. Y. Lee, Y. H. Kho, and C. H. Lee. 2006. Idescarpin isolated from the fruits of Idesia polycarpa inhibits melanin biosynthesis. J. Microbiol. Biotechnol. 16: 667-672
  2. Cole, R. J. and R. H. Cox. 1981. The cytochalasins, pp. 264- 343. Handbook of Toxic Fungal Metabolites. Academic Press, London
  3. Dooley, T. P., R. C. Gadwood, K. Kilgore, and L. M. Thomasco. 1994. Development of an in vitro primary screen for skin depigmentation and antimelanoma agents. Skin Pharmacol. 7: 188-200 https://doi.org/10.1159/000211294
  4. Flashner, M., J. Rasmussen, B. H. Patwardhan, and S. W. Tanenbaum. 1982. Structural features of cytochalasins responsible for Gram-positive bacterial inhibitions. J. Antibiot. 35: 1345- 1350 https://doi.org/10.7164/antibiotics.35.1345
  5. Fujimoto, N., H. Watanabe, T. Nakatani, G. Roy, and A. Ito. 1998. Induction of thyroid tumours in (C57BL/6N x C3H/N)$F_{1}$ mice by oral administration of kojic acid. Food Chem. Toxicol. 36: 697-703 https://doi.org/10.1016/S0278-6915(98)00030-1
  6. Hearing, V. J. and M. Jimenez. 1989. Analysis of mammalian pigmentation at the molecular level. Pigment Cell Res. 2: 75- 85 https://doi.org/10.1111/j.1600-0749.1989.tb00166.x
  7. Iozumi, K., G. E. Hoganson, R. Pennella, M. A. Everett, and B. B. Fuller. 1993. Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes. J. Invest. Dermatol. 100: 806-811 https://doi.org/10.1111/1523-1747.ep12476630
  8. Kim, W. G., I. J. Ryoo, S. H. Park, D. S. Kim, S. K. Lee, K. C. Park, and I. D. Yoo. 2005. Terrein, a melanin biosynthesis inhibitor, from Penicillium sp. 20315. J. Microbiol. Biotechnol. 15: 891-894
  9. Kooyers, T. J. and W. Westerhof. 2004. Toxicological aspects and health risks associated with hydroquinone in skin bleaching formula. Ned. Tijdschr. Geneeskd. 148: 768-771
  10. Nguyen, D. T. M., D. H. Nguyen, L. Hwa-la, H. B. Lee, J. H. Shin, and E. K. Kim. 2007. Inhibition of melanogenesis by dioctyl phthalate isolated from Nigella glandulefera Freyn. J. Microbiol. Biotechnol. 17:1585-1590
  11. Noh, H. J., M. J. Sohn, H. E. Yu, I. D. Yoo, and W. G. Kim. 2007. Cyclo(dehydrohistidyl-L-tryptophyl), an inhibitor of nitric oxide production from a fungal strain, Fb956. J. Microbiol. Biotechnol. 17: 1717-1720
  12. Park, S. H., D. S. Kim, W. G. Kim, I. J. Ryoo, D. H. Lee, C. H. Huh, S. W. Youn, I. D. Yoo, and K. C. Park. 2004. Terrein: A new melanogenesis inhibitor and its mechanism. Cell. Mol. Life Sci. 61: 2878-2885 https://doi.org/10.1007/s00018-004-4341-3
  13. Quevedo, W. C. and T. J. Holstein. 1998. General biology of mammalian pigmentation, pp. 43-58. In J. J. Nordlund, R. E. Boissy, V. J. Hearing, R. A. King, and J. P. Ortonne (eds.), The Pigmentary System. Oxford University Press, New york
  14. Rochfort, S., J. Ford, S. Ovenden, S. S. Wan, S. George, H. Wildman, et al. 2005. A novel aspochalasin with HIV-1 integrase inhibitory activity from Aspergillus flavipes. J. Antibiot. 58: 279-283 https://doi.org/10.1038/ja.2005.34
  15. Zhou, G. X., E. M. Wijeratne, D. Bigelow, L. S. Pierson 3rd, H. D. VanEtten, and A. A. Gunatilaka. 2004. Aspochalasins I, J, and K: Three new cytotoxic cytochalasans of Aspergillus flavipes from the rhizosphere of Ericameria laricifolia of the Sonoran Desert. J. Nat. Prod. 67: 328-332 https://doi.org/10.1021/np030353m

Cited by

  1. Clitocybin D, a Novel Human Neutrophil Elastase Inhibitor from the Culture Broth of Clitocybe aurantiaca vol.19, pp.10, 2009, https://doi.org/10.4014/jmb.0903.03033
  2. Anti-melanogenesis in B16F0 Melanoma Cells by Extract of Fermented Cordyceps militaris Containing High Cordycepin vol.23, pp.12, 2009, https://doi.org/10.5352/jls.2013.23.12.1516
  3. Hypo-pigmenting effect of sesquiterpenes from Inula britannica in B16 melanoma cells vol.37, pp.5, 2009, https://doi.org/10.1007/s12272-013-0302-4
  4. Isolation, Structural Analyses and Biological Activity Assays against Chronic Lymphocytic Leukemia of Two Novel Cytochalasins — Sclerotionigrin A and B vol.19, pp.7, 2009, https://doi.org/10.3390/molecules19079786
  5. Methylthio-Aspochalasins from a Marine-Derived Fungus Aspergillus sp. vol.12, pp.10, 2009, https://doi.org/10.3390/md12105124
  6. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds vol.16, pp.5, 2018, https://doi.org/10.3390/md16050160