References
- Bae, J. W., J. H. Han, M. S. Park, S. G. Lee, E. Y. Lee, Y. J. Jeong, and S. H. Park. 2006. Development of recombinant Pseudomonas putida containing homologous styrene monooxygenase genes for the production of (S)-styrene oxide. Biotechnol. Bioprocess Eng. 11: 530-537 https://doi.org/10.1007/BF02932079
- Bae, J. W., S. H. Shin, M. Raj, S. E. Lee, S. G. Lee, Y. J. Jeong, and S. H. Park. 2008. Construction and characterization of a recombinant whole-cell biocatalyst of Escherichia coli expressing styrene monooxygenase under the control of arabinose promoter. Biotechnol. Bioprocess Eng. 13: 69-76 https://doi.org/10.1007/s12257-007-0172-z
- Beltrametti, F., A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro. 1997. Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 63: 2223-2239
- Cabrita, L. D. and S. P. Bottomley. 2004. Protein expression and refolding - A practical guide to getting the most out of inclusion bodies. Biotechnol. Annu. Rev. 10: 31-50 https://doi.org/10.1016/S1387-2656(04)10002-1
- Choi, W. J. and C. Y. Choi. 2005. Production of chiral epoxides: Epoxide hydrolase-catalyzed enantioselective hydrolysis. Biotechnol. Bioprocess Eng. 10: 167-179 https://doi.org/10.1007/BF02932009
- Di Gennaro, P., A. Colmegna, E. Galli, G. Sello, F. Pelizzoni, and G. Bestetti. 1999. A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 65: 2794-2797
- Furuhashi, K. 1992. Biological routes to optically active epoxides, pp. 167-186. In A. N. Collins, G. N. Sheldrake, and J. Crosby (eds.). Chirality in Industry. John Wiley & Sons Ltd., Chichester, United Kingdom
- Hartmans, S. 1995. Microbial degradation of styrene, pp. 227-239. In V. P. Singh (ed.), Biotransformations: Microbial Degradation of Health Risk Compounds. Elsevier Science, Amsterdam, The Netherlands
- Hartmans, S., M. J. van der Werft, and J. A. M. de Bont. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56: 1347-1351
- Hollmann, F., P.-C. Lin, B. Witholt, and A. Schmid. 2003. Stereospecific biocatalytic epoxidation: The first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J. Am. Chem. Soc. 125: 8209-8217 https://doi.org/10.1021/ja034119u
- Kantz, A., F. Chin, N. Nallamothu, T. Nguyen, and G. T. Gassner. 2005. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch. Biochem. Biophys. 442: 102-116 https://doi.org/10.1016/j.abb.2005.07.020
- Kim, H. S., J. H. Lee, S. Park, and E. Y. Lee. 2004. Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol. Bioprocess Eng. 9: 62-64 https://doi.org/10.1007/BF02949324
- Kim, Y. C., S. Kwon, S. Y. Lee, and H. N. Chang. 1998. Effect of pLysS on the production of bioadhesive precursor protein by fed-batch cultivation of recombinant Escherichia coli. Biotechnol. Lett. 20: 799-803 https://doi.org/10.1023/B:BILE.0000015926.97548.cf
- Lin, K., I. Kurland, L. Z. Xu, A. J. Lange, J. Pilkis, M. R. El-Maghrabi, and S. J. Pilkis. 1990. Expression of mammalian liver glycolytic/gluconeogenic enzymes in Escherichia coli: Recovery of active enzyme is strain and temperature dependent. Protein Express. Purif. 1: 169-176 https://doi.org/10.1016/1046-5928(90)90012-N
- O'Leary, N. D., K. E. O'Connor, W. Duetz, and A. D. W. Dobson. 2001. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147: 973-979 https://doi.org/10.1099/00221287-147-4-973
- Otto, K., K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid. 2004. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavindiffusible monooxygenase. J. Bacteriol. 186: 5292-5302 https://doi.org/10.1128/JB.186.16.5292-5302.2004
- Panke, S., M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid. 2002. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol. Bioeng. 80: 33-41 https://doi.org/10.1002/bit.10346
- Panke, S., V. Lorezo, A. Kaiser, B. Witholt, and M. G. Wubbolts. 1999. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous twoliquid- phase application. Appl. Environ. Microbiol. 65: 5619- 5623
- Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts. 1998. Towards a biocatalyst for (S)-styrene oxide production:Characterization of the styrene degradation pathway of Pseudomonas sp. strain VBL120. Appl. Environ. Microbiol. 64: 2032-2043
- Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt. 2000. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69: 91-100 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X
- Park, M. S., J. W. Bae, J. H. Han, E. Y. Lee, S. G. Lee, and S. H. Park. 2006. Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J. Microbiol. Biotechnol. 16: 1032-1040
- Park, M. S., J. H. Han, S. S. Yoo, E. Y. Lee, S. G. Lee, and S. H. Park. 2005. Degradation of styrene by a new isolate Pseudomonas putida SN1. Korean J. Chem. Eng. 22: 418- 424 https://doi.org/10.1007/BF02719421
- Picaud, S., M. E. Olsson, and P. E. Brodelius. 2007. Improved conditions for production of recombinant plant sesquiterpene synthases in Escherichia coli. Protein Express. Purif. 51: 71-79 https://doi.org/10.1016/j.pep.2006.06.025
- Riedstra, S., G. Leite, C. Ferreira, F. B. Gomes, P. M. P. Costa, and J. P. M. Ferreira. 2007. Optimization of the expression of single-chain antibodies using different Escherichia coli systems. J. Biotech. 131: S251-S252
- Schein, C. H. and N. H. M. Noteborn. 1988. Formation of soluble recombinant proteins in E. coli is favored by lower growth temperature. Biotechnology 6: 291-294 https://doi.org/10.1038/nbt0388-291
- Takagi, H., Y. Morinaga, M. Tsuchiya, H. Ikemura, and M. Inauyi. 1988. Control of folding of proteins secreted by a high expression sensitive vector, p 1N-111-ompA: 16-fold increase in production of active subtilisin in E. coli. Biotechnology 6: 948- 950 https://doi.org/10.1038/nbt0888-948
- Velasco, A., S. Alonso, J. L. Garcia, J. Perera, and E. Diaz. 1998. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J. Bacteriol. 180: 1063- 1071
- Wang, C. C., J. A. Badylak, S. E. Lux, R. Moriyama, J. E. Dixon, and P. S. Low. 1992. Expression, purification, and characterization of the functional dimeric cytoplasmic domain of human erythrocyte band 3 in Escherichia coli. Protein Sci. 1: 1206-1214 https://doi.org/10.1002/pro.5560010913
Cited by
- Electroenzymatic synthesis of (S)-styrene oxide employing zinc oxide/carbon black composite electrode vol.47, pp.7, 2010, https://doi.org/10.1016/j.enzmictec.2010.08.005
- Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides vol.96, pp.2, 2009, https://doi.org/10.1007/s00253-011-3849-3
- Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1 vol.467, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2015.10.016
- Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding vol.5, pp.1, 2009, https://doi.org/10.1186/s13568-015-0112-9
- Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp. vol.81, pp.24, 2015, https://doi.org/10.1128/aem.02059-15
- Expression of genes encoding the luciferase from Photobacterium leiognathi in Escherichia coli Rosetta (DE3) and its application in NADH detection vol.33, pp.6, 2009, https://doi.org/10.1002/bio.3501
- Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities vol.7, pp.3, 2009, https://doi.org/10.3390/biology7030042