참고문헌
- Aamand, J. G., G. Bruntse, M. Jepsen, C. Jorgensen, and B. K. Jensen. 1995. Degradation of PAHs in soil by indigenous and inoculated bacteria, pp. 121-127. In R. E. Hinchee, J. Fredrickson, and B. C. Alleman (eds). Bioaugmentation for Site Remediation Battelle Press, Columbus, OH
- Andreoni, V., S. Bernasconi, M. Colombo, J. B. van Beilen, and L. Cavalca. 2000. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ. Microbiol. 2: 572-577 https://doi.org/10.1046/j.1462-2920.2000.00134.x
- Baek, K. H., Y. K. Lee, I. S. Lee, H. M. Oh, B. D. Yoon, and H. S. Kim. 2004. Detection of Nocardia sp. H17-1 by PCR during bioremediation of crude oil-contaminated soil. Kor. J. Microbiol. Biotechnol. 32: 91-95
- Baek, K.-H., H.-S. Kim, S.-H. Moon, I.-S. Lee, H.-M. Oh, and B.-D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
- Baek, K. H., B. D. Yoon, I. S. Lee, H. M. Oh, and H. S. Kim. 2006. Biodegradation of aliphatic and aromatic hydrocarbons by Nocardia sp. H17-1. Geomicrobiol. J. 23: 253-259 https://doi.org/10.1080/01490450600760633
- Baldwin, B., C. H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and realtime PCR. Appl. Environ. Microbiol. 69: 3350-3358 https://doi.org/10.1128/AEM.69.6.3350-3358.2003
- Beller, H. R., S. T. Kane, T. C. Legler, and P. J. Alvarez. 2002. A real-time polymerase chain reaction method for monitoring anaerobic hydrocarbon-degrading bacteria based on a catabolic gene. Environ. Sci. Technol. 36: 3977-3984 https://doi.org/10.1021/es025556w
- Debruyn, J. M., C. S. Chewning, and G. S. Sayler. 2007. Comparative quantitiative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ. Sci. Technol. 41: 5426-5432 https://doi.org/10.1021/es070406c
- Dionisi, H. M., C. S. Chewning, K. H. Morgan, F. Menn, J. P. Easter, and G. S. Sayler. 2004. Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl. Environ. Microbiol. 70: 3988-3995 https://doi.org/10.1128/AEM.70.7.3988-3995.2004
- Fantrossi, S. E. and S. Agathos. 2005. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8: 268-275 https://doi.org/10.1016/j.mib.2005.04.011
- Goldstein, R. M., L. M. Mallory, and M. Alexander. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50: 977-983
- Harms, G., A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson, and G. S. Sayler. 2003. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343-351 https://doi.org/10.1021/es0257164
- Heiss-Blanquet, S., Y. Benoit, C. Marechaux, and F. Monot. 2005. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J. Appl. Microbiol. 99: 1392-1403 https://doi.org/10.1111/j.1365-2672.2005.02715.x
- Laurie, A. D. and G. Lloyd-Jones. 2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol. 66: 1814-1817 https://doi.org/10.1128/AEM.66.5.1814-1817.2000
- Layton, A. C., H. M. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers, and G. S. Salyer. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 71: 1105-1108 https://doi.org/10.1128/AEM.71.2.1105-1108.2005
- Lopez-Gutierrez, J. C., S. Henry, S. Hallet, F. Martin-Laurent, G. Catroux, and L. Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in environment by real-time PCR. J. Microbiol. Methods 57: 399-407 https://doi.org/10.1016/j.mimet.2004.02.009
- Mesarch, M. B., C. H. Nakatsu, L. Nies. 2000. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl. Environ. Microbiol. 66: 678-683
- Nyssonen, M., R. Piskonen, and M. Itavaara. 2006. A targeted realtime PCR assay for studying naphthalene degradation in the environment. Microb. Ecol. 52: 533-543 https://doi.org/10.1007/s00248-006-9082-4
- Nerella, S., A. L. Wright, and R. W. Weaver. 1995. Microbial inoculants and fertilization for bioremediation of oil in wetlands, pp. 31-38. In R. E. Hinchee, J. Fredrickson, and B. C. Alleman, (eds). Bioaugmentation for Site Remediation Battelle Press, Columbus, OH
- Powell, S. M., S. H. Ferguson, J. P. Bowman, and I. Snape. 2006. Using real-time PCR to assess changes in the hydrocarbondegrading microbial community in the Antarctic soil during bioremediation. Microb. Ecol. 52: 523-532 https://doi.org/10.1007/s00248-006-9131-z
- Sharkey, F. H., I. M. Banat, and R. Marchant. 2004. Detection and quantification of gene expression in environmental bacteriology. Appl. Environ. Microbiol. 70: 3795-3806 https://doi.org/10.1128/AEM.70.7.3795-3806.2004
- Smith, C. J., D. B. Nedwell, L. F. Dong, and A. M. Osborn. 1999. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ. Microbiol. 1: 307-317 https://doi.org/10.1046/j.1462-2920.1999.00037.x
- Stapleton, R. D., G. S. Sayler, J. K. Boggs, E. L. Libelo, T. Stauffer, and W. G.. Macintyre. 2000. Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environ. Sci. Technol. 34: 1991-1999 https://doi.org/10.1021/es990827x
- Watanabe, K. and N. Hamamura. 2003. Molecular and physiological approaches to understand of the ecology of pollutant degradation. Curr. Opin. Biotechnol. 14: 289-295 https://doi.org/10.1016/S0958-1669(03)00059-4
- Widada, J., H. Nojiri, and T. Omori. 2002. Recent developments in molecular techniques for identification and monitoring of xenobioticdegrading bacteria and their catabolic genes in bioremediation. Appl. Microbiol. Environ. 60: 45-59
- Zhang, T. and H. H. P. Fang. 2006. Amplification of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl. Microbiol. Biotechnol. 70: 281-289 https://doi.org/10.1007/s00253-006-0333-6
피인용 문헌
- Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040 vol.21, pp.1, 2009, https://doi.org/10.1007/s10532-009-9281-z
- A comprehensive overview of elements in bioremediation vol.9, pp.3, 2010, https://doi.org/10.1007/s11157-010-9215-6
- High-throughput screening of microbial adaptation to environmental stress vol.85, pp.2, 2009, https://doi.org/10.1016/j.mimet.2011.01.028
- Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity vol.24, pp.4, 2009, https://doi.org/10.1007/s10532-012-9605-2
- Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils vol.98, pp.6, 2009, https://doi.org/10.1007/s00253-013-5256-4
- Failure to Protect Yellowtail Seriola quinqueradiata against Nocardiosis by Vaccination with a Recombinant Protein and pcDNA4 Expression Vector of Edwardsiella tarda Glyceraldehyde-3-phosphate Dehydro vol.49, pp.4, 2009, https://doi.org/10.3147/jsfp.49.151
- The ways to increase efficiency of soil bioremediation vol.23, pp.1, 2016, https://doi.org/10.1515/eces-2016-0011
- Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes vol.12, pp.5, 2009, https://doi.org/10.1007/s11783-018-1064-5
- Bacterial community dynamics during bioremediation of alkane- and PAHs-contaminated soil of Siri island, Persian Gulf: a microcosm study vol.16, pp.12, 2009, https://doi.org/10.1007/s13762-018-02198-y