DOI QR코드

DOI QR Code

Monitoring Bacterial Population Dynamics Using Real-Time PCR During the Bioremediation of Crude-Oil-Contaminated Soil

  • Baek, Kyung-Hwa (Environmental Biotechnology Research Center, KRIBB) ;
  • Yoon, Byung-Dae (Environmental Biotechnology Research Center, KRIBB) ;
  • Cho, Dae-Hyun (Environmental Biotechnology Research Center, KRIBB) ;
  • Kim, Byung-Hyuk (Environmental Biotechnology Research Center, KRIBB) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, KRIBB) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, KRIBB)
  • 발행 : 2009.04.30

초록

We evaluated the activity and abundance of the crude-oil-degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon(TPH) degradation rate constants(k) of the soils treated with and without H17-1 were $0.103\;d^{-1}$ and $0.028\;d^{-1}$ respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA(16S rRNA), alkane monooxygenase(alkB4), and catechol 2,3-dioxygenase(23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil($\alpha$=0.05,p>0.22). These results indicated that H17-1 is a potential candidate for the bioaugmentation of alkane-contaminated soil. Overall, we evaluated the abundance and metabolic activity of the bioremediation strain H17-1 using real-time PCR, independent of cultivation.

키워드

참고문헌

  1. Aamand, J. G., G. Bruntse, M. Jepsen, C. Jorgensen, and B. K. Jensen. 1995. Degradation of PAHs in soil by indigenous and inoculated bacteria, pp. 121-127. In R. E. Hinchee, J. Fredrickson, and B. C. Alleman (eds). Bioaugmentation for Site Remediation Battelle Press, Columbus, OH
  2. Andreoni, V., S. Bernasconi, M. Colombo, J. B. van Beilen, and L. Cavalca. 2000. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ. Microbiol. 2: 572-577 https://doi.org/10.1046/j.1462-2920.2000.00134.x
  3. Baek, K. H., Y. K. Lee, I. S. Lee, H. M. Oh, B. D. Yoon, and H. S. Kim. 2004. Detection of Nocardia sp. H17-1 by PCR during bioremediation of crude oil-contaminated soil. Kor. J. Microbiol. Biotechnol. 32: 91-95
  4. Baek, K.-H., H.-S. Kim, S.-H. Moon, I.-S. Lee, H.-M. Oh, and B.-D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
  5. Baek, K. H., B. D. Yoon, I. S. Lee, H. M. Oh, and H. S. Kim. 2006. Biodegradation of aliphatic and aromatic hydrocarbons by Nocardia sp. H17-1. Geomicrobiol. J. 23: 253-259 https://doi.org/10.1080/01490450600760633
  6. Baldwin, B., C. H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and realtime PCR. Appl. Environ. Microbiol. 69: 3350-3358 https://doi.org/10.1128/AEM.69.6.3350-3358.2003
  7. Beller, H. R., S. T. Kane, T. C. Legler, and P. J. Alvarez. 2002. A real-time polymerase chain reaction method for monitoring anaerobic hydrocarbon-degrading bacteria based on a catabolic gene. Environ. Sci. Technol. 36: 3977-3984 https://doi.org/10.1021/es025556w
  8. Debruyn, J. M., C. S. Chewning, and G. S. Sayler. 2007. Comparative quantitiative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ. Sci. Technol. 41: 5426-5432 https://doi.org/10.1021/es070406c
  9. Dionisi, H. M., C. S. Chewning, K. H. Morgan, F. Menn, J. P. Easter, and G. S. Sayler. 2004. Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl. Environ. Microbiol. 70: 3988-3995 https://doi.org/10.1128/AEM.70.7.3988-3995.2004
  10. Fantrossi, S. E. and S. Agathos. 2005. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8: 268-275 https://doi.org/10.1016/j.mib.2005.04.011
  11. Goldstein, R. M., L. M. Mallory, and M. Alexander. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50: 977-983
  12. Harms, G., A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson, and G. S. Sayler. 2003. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343-351 https://doi.org/10.1021/es0257164
  13. Heiss-Blanquet, S., Y. Benoit, C. Marechaux, and F. Monot. 2005. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J. Appl. Microbiol. 99: 1392-1403 https://doi.org/10.1111/j.1365-2672.2005.02715.x
  14. Laurie, A. D. and G. Lloyd-Jones. 2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol. 66: 1814-1817 https://doi.org/10.1128/AEM.66.5.1814-1817.2000
  15. Layton, A. C., H. M. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers, and G. S. Salyer. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 71: 1105-1108 https://doi.org/10.1128/AEM.71.2.1105-1108.2005
  16. Lopez-Gutierrez, J. C., S. Henry, S. Hallet, F. Martin-Laurent, G. Catroux, and L. Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in environment by real-time PCR. J. Microbiol. Methods 57: 399-407 https://doi.org/10.1016/j.mimet.2004.02.009
  17. Mesarch, M. B., C. H. Nakatsu, L. Nies. 2000. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl. Environ. Microbiol. 66: 678-683
  18. Nyssonen, M., R. Piskonen, and M. Itavaara. 2006. A targeted realtime PCR assay for studying naphthalene degradation in the environment. Microb. Ecol. 52: 533-543 https://doi.org/10.1007/s00248-006-9082-4
  19. Nerella, S., A. L. Wright, and R. W. Weaver. 1995. Microbial inoculants and fertilization for bioremediation of oil in wetlands, pp. 31-38. In R. E. Hinchee, J. Fredrickson, and B. C. Alleman, (eds). Bioaugmentation for Site Remediation Battelle Press, Columbus, OH
  20. Powell, S. M., S. H. Ferguson, J. P. Bowman, and I. Snape. 2006. Using real-time PCR to assess changes in the hydrocarbondegrading microbial community in the Antarctic soil during bioremediation. Microb. Ecol. 52: 523-532 https://doi.org/10.1007/s00248-006-9131-z
  21. Sharkey, F. H., I. M. Banat, and R. Marchant. 2004. Detection and quantification of gene expression in environmental bacteriology. Appl. Environ. Microbiol. 70: 3795-3806 https://doi.org/10.1128/AEM.70.7.3795-3806.2004
  22. Smith, C. J., D. B. Nedwell, L. F. Dong, and A. M. Osborn. 1999. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ. Microbiol. 1: 307-317 https://doi.org/10.1046/j.1462-2920.1999.00037.x
  23. Stapleton, R. D., G. S. Sayler, J. K. Boggs, E. L. Libelo, T. Stauffer, and W. G.. Macintyre. 2000. Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environ. Sci. Technol. 34: 1991-1999 https://doi.org/10.1021/es990827x
  24. Watanabe, K. and N. Hamamura. 2003. Molecular and physiological approaches to understand of the ecology of pollutant degradation. Curr. Opin. Biotechnol. 14: 289-295 https://doi.org/10.1016/S0958-1669(03)00059-4
  25. Widada, J., H. Nojiri, and T. Omori. 2002. Recent developments in molecular techniques for identification and monitoring of xenobioticdegrading bacteria and their catabolic genes in bioremediation. Appl. Microbiol. Environ. 60: 45-59
  26. Zhang, T. and H. H. P. Fang. 2006. Amplification of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl. Microbiol. Biotechnol. 70: 281-289 https://doi.org/10.1007/s00253-006-0333-6

피인용 문헌

  1. Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040 vol.21, pp.1, 2009, https://doi.org/10.1007/s10532-009-9281-z
  2. A comprehensive overview of elements in bioremediation vol.9, pp.3, 2010, https://doi.org/10.1007/s11157-010-9215-6
  3. High-throughput screening of microbial adaptation to environmental stress vol.85, pp.2, 2009, https://doi.org/10.1016/j.mimet.2011.01.028
  4. Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity vol.24, pp.4, 2009, https://doi.org/10.1007/s10532-012-9605-2
  5. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils vol.98, pp.6, 2009, https://doi.org/10.1007/s00253-013-5256-4
  6. Failure to Protect Yellowtail Seriola quinqueradiata against Nocardiosis by Vaccination with a Recombinant Protein and pcDNA4 Expression Vector of Edwardsiella tarda Glyceraldehyde-3-phosphate Dehydro vol.49, pp.4, 2009, https://doi.org/10.3147/jsfp.49.151
  7. The ways to increase efficiency of soil bioremediation vol.23, pp.1, 2016, https://doi.org/10.1515/eces-2016-0011
  8. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes vol.12, pp.5, 2009, https://doi.org/10.1007/s11783-018-1064-5
  9. Bacterial community dynamics during bioremediation of alkane- and PAHs-contaminated soil of Siri island, Persian Gulf: a microcosm study vol.16, pp.12, 2009, https://doi.org/10.1007/s13762-018-02198-y