Nanopatterning of Proteins Using Composite Nanomold and Self-Assembled Polyelectrolyte Multilayers

  • Kim, Sung-Kyu (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Byung-Gee (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Ji-Hye (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • Published : 2009.04.25

Abstract

This paper describes the simple nanopatterning of proteins on polyelectrolyte surfaces using microcontact printing with a nanopatternable, hydrophilic composite nanomold. The composite nanomold was easily fabricated by blending two UV-curable materials composed of Norland Optical Adhesives(NOA) 63 and poly(ethylene glycol) dimethacrylate(PEG-DMA). NOA 63 provided stable nanostructure formation and PEG-DMA induced high wettability of proteins in the nanomold. Using the composite mold and functionalized surface with polyelectrolytes, the fluorescent, isothiocyanate-tagged, bovine serum albumin(FITC-BSA) was successfully patterned with 8 nm height and 500 nm width. To confirm the feasibility of the protein assay on a nanoscale, a glycoprotein-lectin assay was successfully demonstrated as a model system. As expected, the lectins correctly recognized the nano-patterned glycoproteins such as chicken ovalbumin. The simple preparation of composite nanomold and functionalized surface with a universal platform can be applied to various biomolecules such as DNA, proteins, carbohydrates, and other biomolecules on a nanoscale.

Keywords

References

  1. C. S. Lee, S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim, Biosens. Bioelectron., 18, 437 (2003) https://doi.org/10.1016/S0956-5663(02)00147-1
  2. S. Song and K.Y. Lee, Macromol. Res., 14, 121 (2006) https://doi.org/10.1007/BF03218498
  3. R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials, 20, 2363 (1999) https://doi.org/10.1016/S0142-9612(99)00165-9
  4. O. Carion, V. Souplet, C. Olivier, C. Maillet, N. Meclard, O. El-Mahdi, J. O. Durand, and O. Melnyk, Chembiochem., 8, 315 (2007) https://doi.org/10.1002/cbic.200600504
  5. T. J. Park, S. Y. Lee, S. J. Lee, J. P. Park, K. S. Yang, K. B. Lee, S. Ko, J. B. Park, T. Kim, S. K. Kim, Y. B. Shin, B. H. Chung, S. J. Ku, H. Kim, and I. S. Choi, Anal. Chem., 78, 7197 (2006) https://doi.org/10.1021/ac060976f
  6. R. F. Pease, Nature, 417, 802 (2002) https://doi.org/10.1038/417802a
  7. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev., 99, 1823 (1999) https://doi.org/10.1021/cr980002q
  8. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng., 3, 335 (2001) https://doi.org/10.1146/annurev.bioeng.3.1.335
  9. N. Y. Lee, J. R. Lim, M. J. Lee, J. B. Kim, S. J. Jo, H. K. Baik, and Y. S. Kim, Langmuir, 22, 9018 (2006) https://doi.org/10.1021/la060790b
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science, 272, 85 (1996) https://doi.org/10.1126/science.272.5258.85
  11. B. D. Terris, H. J. Mamin, M. E. Best, J. A. Logan, and D. Rugar, Appl. Phys. Lett., 69, 4262 (1996) https://doi.org/10.1063/1.116965
  12. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, Chem. Mater., 8, 1380 (1996)
  13. D. Qin, Y. Xia, and G. M. Whitesides, Adv. Mater., 9, 407 (1997) https://doi.org/10.1002/adma.19970090509
  14. A. Kumar, H. A. Biebuyck, and G. M. Whitesides, Langmuir, 10, 1498 (1994) https://doi.org/10.1021/la00017a030
  15. G. S. Ferguson, M. K. Chaudhury, H. A. Biebuyck, and G. M. Whitesides, Macromolecules, 26, 5870 (1993) https://doi.org/10.1021/ma00074a007
  16. E. Delamarche, H. Schmid, B. Michel, and H. Biebuyck, Adv. Mater., 9, 741 (1997) https://doi.org/10.1002/adma.19970090914
  17. P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, and H. H. Lee, Chem. Mater., 16, 5000 (2004) https://doi.org/10.1021/cm049068u
  18. J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, and De Simone, Angew. Chem. Int. Ed., 43, 5796 (2004) https://doi.org/10.1002/anie.200461122
  19. A. S. Blawas and W. M. Reichert, Biomaterials, 19, 595 (1998) https://doi.org/10.1016/S0142-9612(97)00218-4
  20. K. Kato, H. Sato, and H. Iwata, Langmuir, 21, 7071 (2005) https://doi.org/10.1021/la050893e
  21. W. B. Nowall, N. Dontha, and W.G. Kuhr, Biosens. Bioelectron., 13, 1237 (1998) https://doi.org/10.1016/S0956-5663(98)00030-X
  22. P. Sehr, K. Zumbach, and M. Pawlita, J. Immunol. Methods, 253, 153 (2001) https://doi.org/10.1016/S0022-1759(01)00376-3
  23. G. Decher, Science, 277, 1232 (1997) https://doi.org/10.1126/science.277.5330.1232
  24. D. T. Haynie, L. Zhang, J. S. Rudra, W. H. Zhao, Y. Zhong, and N. Palath, Biomacromolecules, 6, 2895 (2005) https://doi.org/10.1021/bm050525p
  25. H. W. Shim, J. H. Lee, T. S. Hwang, Y. W. Rhee, Y. M. Bae, J. S. Choi, J. Han, and C. S. Lee, Biosens. Bioelectron., 22, 3188 (2007) https://doi.org/10.1016/j.bios.2007.02.016
  26. R. F. M. Lobo, M. A. Pereira-da-silva, M Raposo, R. M. Faria, and O. N. Oliveira, Nanotechnology, 14 101 (2003) https://doi.org/10.1088/0957-4484/14/1/322
  27. L. T. John, T. Joe, and S. C. Christopher, Langmuir, 18, 519 (2002) https://doi.org/10.1021/la011351+
  28. F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, Langmuir, 13, 3422 (1997) https://doi.org/10.1021/la960821a
  29. J. Feng, C. Gao, B. Wang, and J. Shen, Colloid Surface B, 36, 177 (2004) https://doi.org/10.1016/j.colsurfb.2004.06.001
  30. D. K. Mandal, N. Kishore, and C. F. Brewer, Biochemistry, 33, 1149 (1994) https://doi.org/10.1021/bi00171a014
  31. Y. Mine, Trends Food. Sci. Tech., 6, 225 (1995) https://doi.org/10.1016/S0924-2244(00)89083-4
  32. C. R. Yonzon, E. H. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, J. Am. Chem. Soc., 126, 12699 (2004)