Photoelastic stress analysis of the mandibular unilateral free-end removable partial dentures according to the design

하악 편측 유리단 가철성 국소의치의 설계에 따른 광탄성 응력 분석

  • Park, Cheol-Woo (Department of Prosthodontics, College of Dentistry, Chosun University) ;
  • Kay, Kee-Sung (Department of Prosthodontics, College of Dentistry, Chosun University)
  • 박철우 (조선대학교 치과대학 치과보철학교실) ;
  • 계기성 (조선대학교 치과대학 치과보철학교실)
  • Published : 2009.04.30

Abstract

Statement of problem: There are common clinical cases in which the mandibular first and second molars are missing unilaterally. Purpose: This study was designed to compare and evaluate the magnitude and distribution of stress produced by four kinds of mandibular unilateral free-end removable partial dentures that could be applied clinically in Kennedy class II cases. Material and methods: Four unilateral free-end removable partial dentures using clasp, Konus crown, resilient attachment, and flexible resin were fabricated on the photoelastic models of the Kennedy class II cases. The vertical load of 6㎏ was applied on the central fossa of the first molar of every removable partial denture in the stress freezing furnace and the photoelastic models were frozen according to the stress freezing cycle. After these models were sliced mesio-distally to a thickness of 6mm, the photoelastic isochromatic white and black lines of the sliced specimens were examined with the transparent photoelastic experiment device and photographs were taken with a digital camera. The fringe order numbers at eight measuring points in the photograph were measured with the naked eye. Results: The maximum fringe order number of each sliced specimen and the fringe order number at the residual ridge just below the loading point were in the decreasing order of the unilateral removable partial dentures using flexible resin followed by clasp, resilient attachment, and Konus crown. The fringe order number at the root apex of the second premolar was in the decreasing order of the unilateral removable partial dentures using clasp followed by flexible resin, Konus crown, and resilient attachment. Conclusion: The removable partial denture using Konus crown showed the most equalized stress distribution to the supporting alveolar bone of abutment teeth and residual ridge under the vertical loads. The removable partial denture using flexible resin can be applied to the case that has a better state of residual ridge than abutment teeth.

연구목적: 하악 우측 제1, 2 대구치가 결손된 Kennedy 분류 II급 증례에서 임상적으로 적용할 수 있는 편측 유리단 가철성 국소의치의 종류에 따른 응력 분포 양상을 비교하는 것이다. 연구 재료 및 방법: Kennedy 분류 II급 증례의 광탄성 모형에서 클라스프를 이용한 국소의치, 코너스 치관을 이용한 국소의치, 완압형 어태치먼트를 이용한 국소의치, 탄성 레진을 이용한 국소의치를 편측성으로 제작하였다. 응력 동결로에서 응력 주기에 맞춰 각 국소의치의 제1 대구치 중심와에 6 kg의 수직하중을 가하면서 응력을 동결하였다. 광탄성 모형을 절단하여 만든 시편을 광탄성 실험 장치로 광탄성 등색선의 흑백 무늬를 관찰하고 디지털 카메라로 촬영하였다. 촬영된 사진에서 8개의 측정점을 정하여 육안으로 무늬차수를 계측하고 비교하였다. 결과: 각 절단 시편의 최대 무늬차수와 하중점 직하방의 잔존 치조제에 발생한 무늬차수는 탄성 레진을 이용한 국소의치, 클라스프를 이용한 국소의치, 완압형 어태치먼트를 이용한 국소의치, 코너스 치관을 이용한 국소의치 순으로 높게 관찰되었다. 제2 소구치 치근단에 발생한 무늬차수는 클라스프를 이용한 국소의치, 탄성 레진을 이용한 국소의치, 코너스 치관을 이용한 국소의치, 완압형 어태치먼트를 이용한 국소의치 순으로 높게 관찰되었다. 결론: 코너스 치관을 이용한 국소의치가 수직하중시 지대치 주위 치조골과 잔존 치조제에 대하여 응력을 가장 균형있게 분산시켰고, 탄성 레진을 이용한 국소의치는 지대치보다 잔존 치조제의 상태가 더 양호한 경우에 적용 가능할 것이다.

Keywords

References

  1. Berg T, Caputo AA. Maxillary distal-extension removable partial denture abutments with reduced periodontal support. J Prosthet Dent 1993;70:245-50 https://doi.org/10.1016/0022-3913(93)90059-W
  2. Park I, Eto M, Wakabayashi N, Hideshima M, Ohyama T. Dynamic retentive force of a mandibular unilateral removable partial denture framework with a back-action clasp. J Med Dent Sci 2001;48:105-11
  3. Jin X, Sato M, Nishiyama A, Ohyama T. Influence of loading positions of mandibular unilateral distal extension removable partial dentures on movements of abutment tooth and denture base. J Med Dent Sci 2004;51:155-63
  4. Vang MS. Case reports on the removable partial dentures with Konus telescope. J Korean Acad Prosthodont 1997;35:67-77
  5. Kay KS, Shin HD, Song HN. Clinical cases & treatment conception for the distal extension removable partial denture using the attachment. Oral Biology Research 2005;29:113-34
  6. Park CW, Hwang YP, Kay KS. Prosthetic restoration of partially edentulous patients using the Valplast$^{\circledR}$ flexible partial denture system. Oral Biology Research 2006;30:55-73
  7. Monteith BD. Management of loading forces on mandibular distal-extension prostheses. Part II: Classification for matching modalities to clinical situations. J Prosthet Dent 1984;52:832-6 https://doi.org/10.1016/S0022-3913(84)80014-1
  8. Browning JD, Meadors LW, Eick JD. Movement of three removable partial denture clasp assemblies under occlusal loading. J Prosthet Dent 1986;55:69-74 https://doi.org/10.1016/0022-3913(86)90076-4
  9. Frechette AR. The influence of partial denture design on distribution of force to abutment teeth. 1956. J Prosthet Dent 2001;85:527-39 https://doi.org/10.1067/mpr.2001.116561
  10. Kydd WL, Daly CH. The biologic and mechanical effects of stress on oral mucosa. J Prosthet Dent 1982;47:317-29 https://doi.org/10.1016/0022-3913(82)90162-7
  11. Chou TM, Caputo AA, Moore DJ, Xiao B. Photoelastic analysis and comparison of force-transmission characteristics of intracoronal attachments with clasp distal-extension removable partial dentures. J Prosthet Dent 1989;62:313-9 https://doi.org/10.1016/0022-3913(89)90339-9
  12. Reitz PV, Caputo AA. A photoelastic study of stress distribution by a mandibular split major connector. J Prosthet Dent 1985;54:220-5 https://doi.org/10.1016/0022-3913(85)90292-6
  13. Langer A. Telescope retainers for removable partial dentures. J Prosthet Dent 1981;45:37-43 https://doi.org/10.1016/0022-3913(81)90009-3
  14. Igarashi Y, Ogata A, Kuroiwa A, Wang CH. Stress distribution and abutment tooth mobility of distal-extension removable partial dentures with different retainers: an in vivo study. J Oral Rehabil 1999;26:111-6 https://doi.org/10.1046/j.1365-2842.1999.00345.x
  15. Kratochvil FJ, Thompson WD, Caputo AA. Photoelastic analysis of stress patterns on teeth and bone with attachment retainers for removable partial dentures. J Prosthet Dent 1981;46:21-8 https://doi.org/10.1016/0022-3913(81)90129-3
  16. Saito M, Miura Y, Notani K, Kawasaki T. Stress distribution of abutments and base displacement with precision attachment-and telescopic crown-retained removable partial dentures. J Oral Rehabil 2003;30:482-7 https://doi.org/10.1046/j.1365-2842.2003.01092.x
  17. Stewart BL, Edwards RO. Removable partial denture design: a photoelastic study. J Biomed Mater Res 1984;18:979-89 https://doi.org/10.1002/jbm.820180903
  18. Kim BM, Yoo KH. Three-dimensional photoelatic stress analysis of clasp retainers influenced by various designs on unilateral freeend removable partial dentures. J Korean Acad Prosthodont 1994;32:526-52
  19. Lee SH, Lee CH, Jo KH. Analysis of stress developed within the supporting tissue of abutment tooth with indirect retainer according to various designs of direct retainer and degree of bone resorption. J Korean Acad Prosthodont 1998;36:150-65
  20. Ko SH, McDowell GC, Kotowicz WE. Photoelastic stress analysis of mandibular removable partial dentures with mesial and distal occlusal rests. J Prosthet Dent 1986;56:454-60 https://doi.org/10.1016/0022-3913(86)90388-4
  21. Shohet H. Relative magnitudes of stress on abutment teeth with different retainers. J Prosthet Dent 1969;21:267-82 https://doi.org/10.1016/0022-3913(69)90290-X
  22. Korber KH. Cone crowns-a physically defined telescopic system. Dtsch Zahnarztl Z 1968;23:619-30
  23. Carr BA, McGivney GP, Brown DT. McCracken's Removable Partial Prosthodotics. 11th ed. St. Louis: Mosby Co. 1995
  24. Stern MN. Esthetic retention for modern dental prosthesis. N Y State Dent J 1964;30:53-6
  25. Glickman I, Roeber FW, Brion M, Pameijer JH. Photoelastic analysis of internal stresses in the periodontium created by occlusal forces. J Periodontol 1970;41:30-5 https://doi.org/10.1902/jop.1970.41.1.30