A comparison of the fidelity of various zirconia-based all-ceramic crowns fabricated with CAD/CAM systems

수종의 CAD/CAM 시스템으로 제작한 지르코니아 기반 완전도재관의 적합도 비교

  • Kim, Sung-Jun (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Jo, Kwang-Hun (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 김성준 (경북대학교 치과대학 보철학교실) ;
  • 조광헌 (경북대학교 치과대학 보철학교실) ;
  • 이규복 (경북대학교 치과대학 보철학교실)
  • Published : 2009.04.30

Abstract

Statement of problem: The interest in all-ceramic restorations has increased as more techniques have become available. With the introduction of machinable dental ceramics and CAD/CAM systems there is a need to evaluate the quality levels of these new fabrication techniques. Purpose: This study is to evaluate the crown fidelity(absolute marginal discrepancy and internal gap) of various zirconia-based all-ceramic crowns fabricated with different CAD/CAM(computer-assisted design/computer-assisted manufacturing) systems and conventional cast metal-ceramic crowns. Material and methods: A resin tooth of lower right second premolar was prepared. After an impression was taken, one metal master die was made. Then 40 impressions of metal master dies were taken for working dies. 10 crowns per each system were fabricated using 40 working dies. Metal-ceramic crowns were cast by using the conventional method, and Procera, Lava, and Cerec inLab crowns were fabricated with their own CAD/CAM manufactruing procedures. The vertical marginal discrepancies and internal gaps of each crown groups were measured on a metal master die without a luting agent. The results were statistically analyzed using the one-way ANOVA and Tukey's HSD test. Results: 1. Vertical marginal discrepancies were $50.6{\pm}13.9{\mu}m$ for metal-ceramic crowns, $62.3{\pm}15.7{\mu}m$ for Procera crowns, $45.3{\pm}7.9{\mu}m$ for Lava crowns, and $71.2{\pm}2.0{\mu}m$ for Cerec inLab crowns. 2. The Internal gaps were $52.6{\pm}10.1{\mu}m$ for metal-ceramic crowns, $161.7{\pm}18.5{\mu}m$ for Procera crowns, $63.0{\pm}10.2{\mu}m$ for Lava crowns, and $73.7{\pm}10.7{\mu}m$ for Cerec inLab crowns. Conclusion: 1. The vertical marginal discrepancies of, 4 crown groups were all within the clinically acceptable range($120{\mu}m$). 2. The internal gaps of LAVA, Cerec inlab, and metal-ceramic crowns were within clinically acceptable range except Procera crown($140{\mu}m$).

연구목적: 최근에는 금속도재관의 심미적 문제로 심미성과 강도가 개선된 코아용 도재 및 지르코니아를 이용한 전부도재관 시스템에 관심이 증가되고 있다. 특히 금속과 유사한 강도를 가지면서 금속의 비심미성을 극복할 수 있는 지르코니아를 이용한 보철물의 제작이 국내외에서 많이 이뤄지고 있다. 하지만 CAD/CAM 시스템으로 제작되는 여러 종류의 지르코니아를 이용한 전부도재관의 적합도에 대한 임상 연구는 부족한 실정이다. 다양한 CAD/CAM 시스템 중 Procera, Cerec inLab, Lava에 의해 제작된 지르코니아를 이용한 전부도재관의 변연 적합도와 내면 적합도를 측정하여 이를 전통적인 방식으로 주조된 금속 도재관의 적합도와 비교 평가해 봄으로써 임상 적용에 참고 자료로 활용하고자 한다. 연구 재료 및 방법: 본 연구를 위해 하악 우측 제2소구치에 해당하는 레진치를 삭제하여 인상채득 후, 금속 주모형을 제작하였다. 금속 주모형의 40개의 인상을 채득 후 각 시스템마다 10개씩 총 40개의 crown을 제작하였다. 금속도재관은 전통적인 방식으로 제작하였고 Procera, Lava, Cerec inLab crown은 zirconia core를 이용하여 CAD/CAM 시스템으로 제작하였다. 수직 변연 오차와 내면 간격을 각 그룹마다 금속 주모형에 시멘트 접착 없이 측정하였다. 그 결과는 oneway ANOVA와 Tukey's HSD test로 통계 내었다. 결과: 수직 변연 오차는 금속도재관이 $50.6{\pm}13.9{\mu}m$, Procera crown이 $62.3{\pm}15.7{\mu}m$, Lava crown이 $45.3{\pm}7.9{\mu}m$, Cerec inLab crown은 $71.2{\pm}2.0{\mu}m$로 측정되었다. 내면 간격은 금속도재관이 $52.6{\pm}10.1{\mu}m$, Procera crown이$161.7{\pm}18.5{\mu}m$, Lava crown이 $63.0{\pm}10.2{\mu}m$, Cerec inLab crown이 $73.7{\pm}10.7{\mu}m$로 측정되었다. 변연 적합도 측면에서 볼 때 Procera crown, Lava crown, Cerec inLab 그리고 전통적인 금속도재관은 임상적으로 받아들일 수 있는 적합도 범위($120{\mu}m$) 내에 있었다. 내면 적합도 측면에서 볼 때 Procera crown을 제외한 Lava crown, Cerec inLab, 금속도재관은 임상적으로 받아들일 수 있는 적합도 범위($140{\mu}m$) 내에 있었다.

Keywords

References

  1. Kim HS, Ju TH, Oh SC, Dong JK. A Study of the Fracture Strength of the IPS-Empress Ceramic Crown according to margin Type. J Korean Acad Prosthodont 1997;35:296-307
  2. Koo JY, Lim JH, Cho IH. Marginal Fidelities according to the Margin Types of All Ceramic Crowns. J Korean Acad Prosthodont 1997;35:445-57
  3. Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J Prosthodont 1995;8:239-46
  4. Tinschert J, Natt G, Mautsch W, Spickermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74
  5. Duret F, Blouin JL, Duret B. CAD-CAM in dentistry. J Am Dent Assoc 1988;117:715-20
  6. Sturdevant JR, Bayne SC, Heymann HO. Margin gap size of ceramic in-lays using second-generation CAD/CAM equipment. J Esthet Dent 1999;11:206-14 https://doi.org/10.1111/j.1708-8240.1999.tb00400.x
  7. Besimo C, Jeger C, Guggenheim R. Marginal adaptation of titanium frameworks produced by CAD/CAM technique. Int J Prosthodont 1997;10:541-6
  8. Rekow ED. High-technology innovations and limitations for restorative dentistry. Dent Clin North Am 1993;37:513-24
  9. Mormann WH, Schug J. Grinding precision and accuracy of fit of Cerec2 CAD-CAM inlays. JADA 1997;128:47-53
  10. Andersson M, Razzoog ME, Oden A, Hegenbarth EA, Lang BR. Procera: a new way to achieve an all-ceramic crown. Quintessence Int 1998;29:285-96
  11. Person M, Andersson M, Bergman B. The accuracy of a high-precision digitizer for CAD/CAM of crown. J Prosthet Dent 1995;74:223-9 https://doi.org/10.1016/S0022-3913(05)80127-1
  12. Hung SH, Hung KS, Eick JD, Chappel RP. Marginal fit of porcelain-fused-to-metal and two types of ceramic crown. J Prosthet Dent 1990;63:26-31 https://doi.org/10.1016/0022-3913(90)90260-J
  13. May KB, Russel MM, Razzoog ME, Lang BR. Precision of fit: the Procera Allceram crown. J Prosthet Dent 1998;80:394-404 https://doi.org/10.1016/S0022-3913(98)70002-2
  14. Kim DK, Cho IH, Lim JH, Lim HS. On the marginal fidelity of all-ceramic core using CAD/CAM system. J Korean Acad Prosthodont 2003;41:20-34
  15. Nakamura T, Dei N, Kojima T, Wakabayashi K. Marginal and internal fit of Cerec 3 CAD/CAM all-ceramic crown. Int J Prosthodont 2003;16:244-8
  16. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8 https://doi.org/10.1016/0022-3913(89)90170-4
  17. Assif D, Rimer Y, Aviv I. The flow of zinc phosphate cement under a full-coverage restoration and its effect on marginal adaptation according to the location of cement application. Quitessence Int 1987;18:765-74
  18. Christensen GJ. Marginal fit of gold inlay casting. J Prosthet Dent 1966;16:297-305 https://doi.org/10.1016/0022-3913(66)90082-5
  19. Sorensen SE, Larsen IB, Ju ¨rgensen KD. Gingival and alveolar bone reaction to marginal fit of subgingival crown margins. Scand J Dent Res 1986;94:109-14 https://doi.org/10.1111/j.1600-0722.1986.tb01373.x
  20. McLean JW, Von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971; 131:107-11 https://doi.org/10.1038/sj.bdj.4802708
  21. McLean JW. Polycarboxylate cements. Five years' experience in general practice. Br Dent J 1972;132:9-15 https://doi.org/10.1038/sj.bdj.4802795
  22. Belser UC, Mecentee MI, Richter WA. Fit of three porcelain-fused-to-metal marginal designs in vivo: a scanning electron microscope study. J Prothet Dent 1985;53:24-9 https://doi.org/10.1016/0022-3913(85)90058-7
  23. Suttor D, Bunke K, Hoescheler S, Hauptmann H, Hertlein G. Lava$^{\circledR}$ - The system for all-ceramic $ZrO_2$ crown and Brige frameworks. Int J Compt Dent 4 2001;3:195-206
  24. Bindl A, Mormann WH. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 2005;32:441-7 https://doi.org/10.1111/j.1365-2842.2005.01446.x
  25. Persson A, Andersson M, Oden A, Sandborgh-Englund G. A three-dimensional evaluation of a laser scanner and a touch-probe scanner. J Prosthet Dent 2006;95:194-200 https://doi.org/10.1016/j.prosdent.2006.01.003
  26. Kim IS, Kim BO, Yoo KH, Kang DW. Design and fabrication of inner konus crown usingthree dimensional computer graphics. J Korean Acad Prosthodont 2000;38:544-51
  27. Grey NJ, Piddock V, Wilson MA. In vitro comparison of conventional crowns and a new all-ceramic system. J Dent 1993;21:47-51 https://doi.org/10.1016/0300-5712(93)90051-Q
  28. Tuntiprawon M. Wilson PR. The effect ofcement thickness on the fracture strength of all-ceramic crowns. Aust Dent J 1995;40:17-21 https://doi.org/10.1111/j.1834-7819.1995.tb05607.x
  29. Jorgensen KD, Esbensen AL. The relationship between the film thickness of zinc phosphate cement and the retention of veneer crowns. Acta Odontol Scand 1968;26:169-75 https://doi.org/10.3109/00016356809026130
  30. Passon C, Lambert RH, Lambert RL, Newman S. The effect of multiple layers of die-spacer on crown retention. Oper Dent 1992;17:42-9
  31. Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont 2004;17:59-64
  32. Lee KB, Park CW, Kim KH, Kwon TY. Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dental Materials Journal 2008;27:422-6 https://doi.org/10.4012/dmj.27.422
  33. Park SH, Lee KB. A comparison of the crown fidelity between various cores fabricated with CAD/CAM and conventional cast metal coping. J Korean Acad Prosthodont 2008;46:269-79