DOI QR코드

DOI QR Code

Growth of Mg Doped CuCrO2 by Pulsed Laser Deposition

PLD법에 의한 Mg가 첨가된 CuCrO2 박막 성장

  • Kim, Se-Yun (School of Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Jong-Chul (School of Materials Science and Engineering, Kyungpook National University) ;
  • Choi, Im-Sic (School of Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Joon-Hyung (School of Materials Science and Engineering, Kyungpook National University) ;
  • Kim, Jeong-Joo (School of Materials Science and Engineering, Kyungpook National University) ;
  • Heo, Young-Woo (School of Materials Science and Engineering, Kyungpook National University)
  • 김세윤 (경북대학교 신소재공학부) ;
  • 이종철 (경북대학교 신소재공학부) ;
  • 최임식 (경북대학교 신소재공학부) ;
  • 이준형 (경북대학교 신소재공학부) ;
  • 김정주 (경북대학교 신소재공학부) ;
  • 허영우 (경북대학교 신소재공학부)
  • Published : 2009.04.30

Abstract

We report on the growth of $CuCrO_2$ films using pulsed laser deposition and their structural and electrical transport properties. $CuCrO_2$ thin films were doped with 5 at% Mg for p-type properties. Epitaxial films of $CuCr_{0.95}Mg_{0.05}O_2$ were grown on c-plane sapphire substrates. The effects of growth temperature and oxygen pressure on film properties were investigated. The main phase of delafossite $CuCr_{0.95}Mg_{0.05}O_2$ was appeared above the growth temperature of $600^{\circ}C$. The thin film grown at $500^{\circ}C$ showed the highest conductivity, reaching 19.6 S/cm while higher growth temperatures over $500^{\circ}C$ led to lower conductivity; the thin film grown at $700^{\circ}C$ showed 0.02 S/cm.

Keywords

References

  1. T. Minami, Semicond. Sci. Technol. 20 (2005) S35 https://doi.org/10.1088/0268-1242/20/4/004
  2. I. Hamberg, C. G. Granquist, J. Appl. Phys., 60(1986) R135
  3. W. K. Yang, J. J. Joo, J. Kor. Surf. Eng., 44 (2007)209
  4. E. Park, S. H. Park, L. Jie, P. K. Song, J. Kor. Inst. Surf. Eng., 41 (2008) 142 https://doi.org/10.5695/JKISE.2008.41.4.142
  5. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389 (1997) 939 https://doi.org/10.1038/40087
  6. J. Li, A. W. Sleight, C. Y. Jones, B. H. Toby, Journal of Solid State Chemistry, 178 (2005) 285 https://doi.org/10.1016/j.jssc.2004.11.017
  7. C. H. Yi, I. Yasui, U. Shigesato, J. Appl. Phys. 34 (1995) 600 https://doi.org/10.1143/JJAP.34.600
  8. H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, MRS Bulletin August, (2000) 28
  9. H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Solid-State Electron., 47 (2003) 12
  10. H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, J. Appl. Phys., 88 (2000) 4159 https://doi.org/10.1063/1.1308103
  11. H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, H. Hosono, J. Electroceram., 4 (2000) 427 https://doi.org/10.1023/A:1009924307232
  12. A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe, Appl. Phys. Lett., 73 (1998) 220 https://doi.org/10.1063/1.121761
  13. P. W. Sadika, M. Ivilla, V. Craciuna, D. P. Norton, Thin Solid Films, 517 (2009) 3211 https://doi.org/10.1016/j.tsf.2008.10.097
  14. Hongmei Luo, Menka Jain, Thomas M. McCleskey, Eve Bauer, Anthony K. Burrell, Quanxi Jia. Adv. Mater., 19 (2007) 3604 https://doi.org/10.1002/adma.200700528

Cited by

  1. Study of Dry Etching of SnO thin films using a Inductively Coupled Plasma vol.49, pp.1, 2016, https://doi.org/10.5695/JKISE.2016.49.1.98
  2. Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature vol.97, pp.22, 2010, https://doi.org/10.1063/1.3521310
  3. Investigation of the effect of oxygen gas on properties of GAZO thin films fabricated by facing targets sputtering system vol.29, pp.7, 2014, https://doi.org/10.1088/0268-1242/29/7/075007