DOI QR코드

DOI QR Code

CONDITIONS IMPLYING CONTINUITY OF MAPS

  • Baran, Mehmet (DEPARTMENT OF MATHEMATICS ERCIYES UNIVERSITY AND DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE KING SAUD UNIVERSITY) ;
  • Kula, Muammer (DEPARTMENT OF MATHEMATICS ERCIYES UNIVERSITY) ;
  • Erciyes, Ayhan (DEPARTMENT OF MATHEMATICS ERCIYES UNIVERSITY)
  • Published : 2009.07.01

Abstract

In this paper, we generalize the notions of preserving and strongly preserving maps to arbitrary set based topological categories. Further, we obtain characterizations of each of these concepts as well as interprete analogues and generalizations of theorems of Gerlits at al [20] in the categories of filter and local filter convergence spaces.

Keywords

References

  1. J. Adamek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, New York, 1990
  2. M. Baran, Separation properties, Indian J. Pure Appl. Math. 23 (1992), no. 5, 333–341
  3. M. Baran, Stacks and filters, Doga Mat. 16 (1992), no. 2, 95–108
  4. M. Baran, The notion of closedness in topological categories, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 383–395
  5. M. Baran, Separation properties in category of filter convergence spaces, Bull. Calcutta Math. Soc. 85 (1993), no. 3, 249–254
  6. M. Baran, A notion of compactness in topological categories, Publ. Math. Debrecen 50 (1997), no. 3-4, 221–234
  7. M. Baran, $T_3$ and $T_4$-objects in topological categories, Indian J. Pure Appl. Math. 29 (1998), no. 1, 59–69
  8. M. Baran, Closure operators in convergence spaces, Acta Math. Hungar. 87 (2000), no. 1-2, 33–45 https://doi.org/10.1023/A:1006768916033
  9. M. Baran and M. Kula, A note on separation and compactness in categories of convergence spaces, Appl. Gen. Topol. 4 (2003), no. 1, 1–13 https://doi.org/10.4995/agt.2003.2005
  10. M. Baran and M. Kula, A note on connectedness, Publ. Math. Debrecen 68 (2006), no. 3-4, 489–501
  11. N. Bourbaki, General Topology, Addison-Wesley Publ. Co., 1966
  12. G. Castellini and D. Hajek, Closure operators and connectedness, Topology Appl. 55 (1994), no. 1, 29–45 https://doi.org/10.1016/0166-8641(94)90063-9
  13. G. Castellini, Connectedness with respect to a closure operator, Appl. Categ. Structures 9 (2001), no. 3, 285–302 https://doi.org/10.1023/A:1011247621101
  14. M. M. Clementino, E. Giuli, and W. Tholen, Topology in a category: compactness, Portugal. Math. 53 (1996), no. 4, 397–433
  15. M. M. Clementino and W. Tholen, Separation versus connectedness, Topology Appl. 75 (1997), no. 2, 143–181 https://doi.org/10.1016/S0166-8641(96)00087-9
  16. D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers Group, Dordrecht, 1995
  17. D. Dikranjan and E. Giuli, Closure operators. I, Topology Appl. 27 (1987), no. 2, 129–143 https://doi.org/10.1016/0166-8641(87)90100-3
  18. D. Dikranjan and E. Giuli, Compactness, minimality and closedness with respect to a closure operator, Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988), 284–296, World Sci. Publ., Teaneck, NJ, 1989
  19. D. Dikranjan, E. Giuli, and A. Tozzi, Topological categories and closure operators, Quaestiones Math. 11 (1988), no. 3, 323–337 https://doi.org/10.1080/16073606.1988.9632148
  20. J. Gerlits, I. Juhasz, L. Soukup, and Z. Szentmiklossy, Characterizing continuity by preserving compactness and connectedness, Topology Appl. 138 (2004), no. 1-3, 21–44 https://doi.org/10.1016/j.topol.2003.07.005
  21. H. Herrlich, Topological functors, General Topology and Appl. 4 (1974), 125–142 https://doi.org/10.1016/0016-660X(74)90016-6
  22. H. Herrlich, G. Salicrup, and G. E. Strecker, Factorizations, denseness, separation, and relatively compact objects, Proceedings of the 8th international conference on categorical topology (L'Aquila, 1986). Topology Appl. 27 (1987), no. 2, 157–169
  23. H. Lord, Connectednesses and disconnectednesses, Papers on general topology and applications (Slippery Rock, PA, 1993), 115–139, Ann. New York Acad. Sci., 767, New York Acad. Sci., New York, 1995 https://doi.org/10.1111/j.1749-6632.1995.tb55900.x
  24. E. Lowen-Colebunders, Function Classes of Cauchy Continuous Maps, Monographs and Textbooks in Pure and Applied Mathematics, 123. Marcel Dekker, Inc., New York, 1989
  25. E. G. Manes, Compact Hausdorff objects, General Topology and Appl. 4 (1974), 341–360 https://doi.org/10.1016/0016-660X(74)90011-7
  26. E. R. McMillan, On continuity conditions for functions, Pacific J. Math. 32 (1970), 479–494 https://doi.org/10.2140/pjm.1970.32.479
  27. L. D. Nel, Initially structured categories and Cartesian closedness, Canad. J. Math. 27 (1975), no. 6, 1361–1377 https://doi.org/10.4153/CJM-1975-139-9
  28. G. Preuss, Theory of Topological Structures, An approach to categorical topology. Mathematics and its Applications, 39. D. Reidel Publishing Co., Dordrecht, 1988
  29. G. Salicrup and R. Vazquez, Connection and disconnection, Categorical topology (Proc. Internat. Conf., Free Univ. Berlin, Berlin, 1978), pp. 326–344, Lecture Notes in Math., 719, Springer, Berlin, 1979. 326-344 https://doi.org/10.1007/BFb0065251
  30. F. Schwarz, Connections between convergence and nearness, Categorical topology (Proc. Internat. Conf., Free Univ. Berlin, Berlin, 1978), pp. 345–357, Lecture Notes in Math., 719, Springer, Berlin, 1979 https://doi.org/10.1007/BFb0065285
  31. W. Tholen, Factorizations, Factorizations, fibres and connectedness, Categorical topology (Toledo, Ohio, 1983), 549–566, Sigma Ser. Pure Math., 5, Heldermann, Berlin, 1984