DOI QR코드

DOI QR Code

WEAK METRIC AND WEAK COMETRIC SCHEMES

  • Published : 2009.07.01

Abstract

The notion of weak metric and weak cometric schemes are introduced as a generalization of metric and cometric schemes. They are given as the wreath product of a finite number of symmetric association schemes satisfying certain equivalent conditions which are analogous to the ones for metric or cometric schemes. We characterize those schemes and determine some of their parameters.

Keywords

References

  1. S. Bang and S. Y. Song, On generalized semidirect product of association schemes, Discrete Math. 303 (2005), no. 1-3, 5–16 https://doi.org/10.1016/j.disc.2004.12.014
  2. E. Bannai and T. Ito, Algebraic combinatorics. I, Association schemes. The Ben-jamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984
  3. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18. Springer-Verlag, Berlin, 1989
  4. R. A. Brualdi, J. Graves, and K. M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1995), no. 1-3, 57–72 https://doi.org/10.1016/0012-365X(94)00228-B
  5. D. S. Kim, MacWilliams-type identities for fragment and sphere enumerators, European J. Combin. 28 (2007), no. 1, 273–302 https://doi.org/10.1016/j.ejc.2005.07.018
  6. D. S. Kim, Dual MacWilliams pair, IEEE Trans. Inform. Theory 51 (2005), no. 8, 2901–2905 https://doi.org/10.1109/TIT.2005.851765
  7. H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1424–1431 https://doi.org/10.1109/TIT.2005.844067
  8. H. K. Kim and D. Y. Oh, Association schemes for poset metrics and MacWilliams duality, to submit
  9. S. Y. Song, Fusion relation in products of association schemes, Graphs Combin. 18 (2002), no. 3, 655–665 https://doi.org/10.1007/s003730200049