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WEAK METRIC AND WEAK COMETRIC SCHEMES

DAE SAN KiMm AND GIL CHUN Kim

ABSTRACT. The notion of weak metric and weak cometric schemes are
introduced as a generalization of metric and cometric schemes. They are
given as the wreath product of a finite number of symmetric association
schemes satisfying certain equivalent conditions which are analogous to
the ones for metric or cometric schemes. We characterize those schemes
and determine some of their parameters.

1. Introduction

Let Fy be the finite field with ¢ elements, and let P = ([n], <) be a poset on
the underlying set [n] = {1,2,...,n} of coordinate positions of vectors in Fy.
Then the P-weight wp is the function on Fj which is given by

wp(z) = |{i € [n] | i < j for some j € Supp(z)}|.

Here Supp(x) = {j € [n] | z; # 0} for x = (21,...,2,) € F. Now, dp(z,y) =
wp(x — y) is a metric, called P-metric. If P is an antichain, P-weight and
P-metric reduce respectively to Hamming weight and Hamming metric. The
notion of P-codes, namely subsets C C Fy equipped with wp, were introduced
in [4] by Brualdi et. al.

For each linear code C C Iy, the P-weight distribution of C is {Ap, (C)}iy,
where

Ap i(C) =z €C | wp(x) =i }|.
)

We will denote by Aut (IFZ, wp) the group of all linear automorphisms 7 : Fj —
[y satisfying wp(Tz) = wp(x) for all z € Fy. Let Po = m1&@ - - @& nyl be
the poset (Pg is called a weak order poset) given as the ordinal sum of the
antichains n;1 on the set {nqy + -+ +n;—1+1,...,n1 + -+ +n;-1 +n;} for
i =1,...,t, ie., the underlying set is [n] (n = ny + -+ + n:) and the order
relation is given by:

1<j < itenl, j€n,l forsomel < m.
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Then we have the following fundamental result.

Theorem A. The following are equivalent.

(1) P is a weak order poset on [n].

(2) (Fy {Ri}i), with (v,y) € R; & dp (v,y) =i (0 <i < n)isa
symmetric translation association scheme.

(3) The P-weight distribution {Ap, ;(C)}7_y of C uniquely determines P-
weight distribution {Ag A(CH)} of C* for any linear code C C F7.

(4) The group Aut(Fy, we) acts transitively on each P-sphere Sp(r) = {z €
F2|wp(ac) =r} for0<r<n.

(1)<(2) is shown in [8]. (1)=(3) is proved in [5] and [7], and (3)=-(1) in
[7]. Finally, (1) = (4) is verified in [5] and (4)=(1) in [6]. Here we remark
that the proofs for (1)=-(3) were found in the form of Macwilliams-type identi-
ties by applying the discrete Poisson summation formula to suitable P-weight
enumerators (cf. [5-7]).

Let us now pay our attention to the equivalence (1)<>(2) in Theorem A.
We will denote the association scheme (Fy,{R;}i.,), with (z,y) € R; &
dp,(z,y) =i (Pp =1 ®nl®--- & nel), by H(ny,...,nq), which is what
we call a weak Hamming scheme. Note that this becomes the usual Hamming
scheme when ¢ = 1. Recall the following theorem of Delsarte [3], which is
usually called generalized MacWilliams identity.

Theorem B. LetY be an additive code of the translation association scheme
X =(X,{Ri}}—y). Then
[e] n 1 n
(a; (Y ))j:O = m(ai(y))izo(%‘j)-
Here Y is just a subgroup of X, Y° is the additive code of the dual scheme
X = (X7, {R;k ;L:O) of X, gwen by
Yo={xeX"| x(z)=1 forallz €Y},

a;(Y) =Ky e Y[ (0,y) € R; },

a;(Y°) =[{x e Y°| (1,x) € R} }|,
and (qi;) is the Q-matriz of the scheme X.

An immediate consequence of Theorem B is the classical MacWilliams iden-

tity which can be expressed in weight-enumerator-free form as: for any linear
code C C IFZL,

1y\\n _ 1 . n N
(@;(C™))j=0 = m(az(C))i:o(pj (),

where p;(x) = pj(z;n,q) is the Krawtchouk polynomial defined by

po =3 ey () (27 0<ism

1=0 J—l
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Likewise, we would have yet another way of obtaining “MacWilliams-type iden-
tity” if we could find the Q-matrix for the scheme H(nq,...,n:;q), which is an
example of weak metric schemes, i.e., a finite wreath product of metric schemes

(cf. [1], [9]).

Indeed, we observe that, fort =1,...,t, 1 <49 <mn;,ori=1, i9 =0,
dp,(7,y) =n1+ -+ ni—1 +i0 S Tiv1 = Yir1,---, T = Y, du(Ti,yi) = o,
where dp is the Hamming metric. So identifying Fj with Fj* x -+ x Fjt
by writing the elements » € Fj; as blocks of coordinates x = (z1,...,2;) €

Fyt x - x Fpt, we see that H(ni,...,ntq) = H(ni,q) U UH(ng, q) is noth-
ing but the wreath product of the Hamming schemes H(nq,q),..., H(ns, q),
which are metric schemes as is well-known. This motivates our study of weak
metric and weak cometric schemes. In particular, this will contribute to better
understanding of the important weak Hamming scheme H(nq,...,ns;q) (cf.
Theorem A above).

This paper is organized as follows. In Section 2, we will fix some notations
that will be used throughout this paper. In Section 3, the notion of weak
metric schemes is introduced as a finite wreath product of metric schemes.
Several equivalent conditions for being weak metric schemes are presented in
Theorem 2. These include the conditions on the shape of the “first inter-
section matrices for each level”, some modified polynomial relations on the
adjacency matrices for each level and some modified polynomial relations on
the p-numbers for each level. In Section 4, for schemes given as a finite wreath
product of (not necessarily metric) symmetric association schemes, some of
their parameters are determined. But, for Proposition 9(b), Lemma 10 and
Theorem 11, we assume that the schemes are weak metric schemes. Note that,
for weak metric schemes, Theorem 7(a) completely determines the first inter-
section matrices for each level, whereas Theorem 2 (b) gives only information
about the shapes of those ones. Theorem 11 is an analogue of [2, Theorem 1.3,
p. 197 ]. However, proving that requires considerably more work. In Section 5,
the notion of weak cometric schemes, which is dual to weak metric schemes,
is introduced and some equivalent conditions for being cometric schemes are
presented. Finally, in Section 6, we will give an example illustrating modified
polynomial relations in the case of a weak Hamming scheme.

2. Preliminaries and notations

Let n1,...,ns be positive integers with n = ny + --- + ny. For each ¢ =
1,2,...,t, let 00 = (X3, {R;i)};-io) be a symmetric association scheme. Here
we will always assume that the relations of (9 are ordered as Réi), Rgi), ces

). Then X = XWX = (X = Xy x - x X, {R;}7_) is the wreath
product of XM, 2 . x®) 5o that, for (z1,...,2¢), (y1,...,9) € X,

(T,Yy) € Rn,_y+ip © Tit1 =Yit1,.--, 0 = yp and (24, y;) € Rgé)
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fori=1,...,t, 1 <ig<mny,ori=114 =0 (cf. [1], [9]). Here we will always
assume that the relations of X are ordered as Ro, Ry, ..., Ry.
For each i = 1,...,t, let I'; = (Xi,Rgl)) be the graph with the distance
function 9;. Then, for x = (x1,...,2¢), ¥y = (y1,-..,yt) € X, we define
0 if x =y,

1) d(xz,y) = ’ .
(1) diw,y) { ni—1+0i(xi,yi), if ¥ #y and xip1 = Yig1, .. T = Y,
where n;_1 =nq1+---+n;_1. Then d is a distance function. For this, we only

need to check d(z,y) < d(z,z) + d(z,y) for x # y. Assume x; # y;, Tit1 =
Yit1,-- -, Tt =Y. Then z; # z; or z; # y;, so that

d(z,2) +d(z,y) > ni—1 + 0i(wi, 2i) + 9i(2i,yi)
> ni—1 + 0i(xi,Yi)
= d(z,y).
Remark 1. (z,y) € Ry, 41 & d(z,y) =ni1+1(G=1,....1).

For elementary facts about association schemes, one is referred to [2] and
[3]. Throughout this paper, the following notations will be used.

® ny,...,n; positive integers with ny +---+ng=n, ny+---+n; =n
(1<i<t),ng=0,n+---4+n=m (1<i<t), Mg =0.

e X = (X, {R;i)};-io) a symmetric association scheme with a fixed
ordering R(()i), Rgi), ceey R%) of relations (i = 1,...,1t).

e Some of the parameters of ¥(9) used are: valencies Uéi) =1, vy), e
vﬁf}, multiplicities méi) =1, m(li), e mgf) , intersection numbers p%)k,
Krein parameters q](;)k, the adjacency matrices Aéi) =1, Agi), ce Aﬁf},
the irreducible idempotents Eéi) = | X7, Ey), . .,E,(Z), the first
intersection matrix L(li) = (pg?k)ogk, i1<n;, the first dual intersection

matrix Ml(i) = (qs)k)ogk, 1<n;-

o X = (X = X1x-xX, {R;}}_o) the wreath product X = XMy x®
of XV ... x® with a fixed ordering Ro, Ri,..., R, of relations, so
that (,y) € Rn,_,4ip < Tit1 = Yit1,---, 2t = Yy and (x;,y;) € RE;)
fori=1,...,t, 1 <ig<mng,ori=14=0.

e Some of the parameters of X used are: p-numbers pj;;, g-numbers
gji, intersection numbers p;?l, Krein parameters qfl, valencies vy =
1,v1,...,v,, multiplicities mg = 1, mq,...,m,, the adjacency matri-
ces Ag, Aq,..., Ay, the irreducible idempotents Fg, E1, ..., E,, inter-
section matrices L; = (p?l)0§k7 1<n, dual intersection matrices M; =

(@})o<k, i1<n-
e Further notations for the parameters of X are:
0 = pj, w1y v =1 (0O = 00),
(@)

W = 45, e, MmO = mr g (m@ = W),
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L® = (pf”il“’ o<k, i<n the “first intersection matrix of level 7,

MO = (qfliiﬂJrL o<k, 1<n the “first dual intersection matrix of level

)

"
[L(’)] (pfli71+17 Dni_1<k, 1<n; & submatrix of L,
[

M®) = (i i1, Jmii<k, 1<m; a submatrix of M®,

o I'; = (X;, R(i ) the graph with distance function 9;, d the function on
X defined by (1).

3. Weak metric schemes

Let X = (X = X1 x -+ x Xy, {R;}7_) =XM1 X" be the symmetric
association scheme which is given as the wreath product of the symmetric as-
sociation schemes X" = (X, {Ry) }ito) (cf. Section 2). Then it will be called
a weak metric scheme if X satisfies further the following equivalent conditions.
Theorem 2. The following are equivalent.

(a) T; = (X, Rgi)) is distance-regular for i =1,...,t, and
(2) (z,y) € Rj & d(z,y) =j for j=0,...,n
(b) Fori=1,...,t, we have the following:
(i) The submatriz [L()] = (pm 41, Dnici<k, 1<ns of

LY = (pF 1 Dok, 1<n

is a tridiagonal matriz with nonzero off-diagonal entries.
Moreover, L9 has the following entries:

(i) (PF, \11 Dniti<k, 1<n =007,
(iil) P2, 1. p 1 =0 for 0 <k < mi_,
)

n;—1+1
(iv) py.- i1 =w for0<1<n;q,

(v) All the other entries not appearing in (i)-(iv) are zeros.
(¢) There are polynomials with real coefficients 1/)(1 (x) of degree 0, 1/)(1)( )

of degree k for i =1,...,t, 1<k<m, wzthw(z)( 0)=0(2<i<t),
g 20 0@ @ ® ®

and real numbers oy Qg ge ey O ooy Oty
such that

(3) AM-H'O = w'f;) (AE-Fl) + Oé,gé) (AO + -+ Anq,—l)
fori=1,...,t,1 <149 <mny, or i=1,i9=0.

(d) p-numbers satisfy

Di, meavio = U (057 + 0l (pjo + -+ 1y miy) (05 <),
where wgs) s and agé) ’s are the same as in (c), and 9?) =Dy, ns_141-

(e) X = (X;, {Ry)}?:'o) is a metric scheme fori=1,... t.
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Proof. We first note the following: fori =1,...,¢t, 1 <ig < ng,ori =1, ig =0,
(4) AMHOAZ = ’UlAMJF'L.O for 0 <1 <m_;.
For this, we need to see: for 1 <j <i, 1<k <njorj=1k=0,
Api i +ioAny 14k = Uny_y+kAniy +io-
Let (z,y) € Rp. If (2,2) € Rni_i4io, (2,y) € Rnj_,4x for some z € X,
then (x,y) € RMHO, and hence m = n;—1 +ip. On the other hand, if
(z,9) € Rni_y+io, then
{z € X| (z,2) € Rn,_i4io» (2,9) € R4k}
—{2€ X| (59) € Ruy_, i}

This shows (4).

(a) = (b) (i) Let k = n;—1+ko, I =mn;—1+1o, with 0 < ko, lo < n;. Suppose
p’:“,1+1, 1 0. Thend(z,y) =k, d(z,2) =n;—1+1, d(z,y) =l for some z, y, 2.
Th—en 01(301,3/1) = k/’o, Gi(xi,zi) = 1, 01(21,;%) = ZO. So |k’0 — l0| S 1, and hence
k=1l <1. Thus pf ., , =0,if [k —1] > 2, with n;_y <k, | <n,. Also,
prFﬁL , 7 0,if |k—1| = 1. For any x;,y; € X;, with 0;(x;,y;) = ko (> 1), there

is a path z; = zéi),zgi), . .,z,i? = y;. Then 8i(xi,z§i)) =1, 81-(25”,%) =ko—1.
Choose any points z; € X; for all j # ¢, and set

= (T1, .y Ti1, Ti, Tig1,---,Tt),

Y= (T1, o s Bim 1, Yiy T Ly -y Tt)s

z = (Il,...,l‘i_1725i),$i+1,...,$t).

Then d(z,y) = n;—1 + ko, d(x,2) = n;—1 + 1, d(z,y) = ni—1 + ko — 1. So
prFHL w1 7 0forn;_1+1 <k < n;. Similarly, one shows that prFlH’ kil 7
0forn;_y <k<n; —1
(ii) Let n, +1 <1 < n. For any z,y with d(z,y) =1,
p%ni_,lJrl, 1= |{Z| d(I,Z) =Ni—1 + 17 d(Z,y) = l}|
= (] d(z,2) = iy + 1)}
=0,

Indeed, if | = n; + 1y (1 <lp < nji1) for some j with ¢ < j <t — 1, then,
for z with d($,_2) = N;—1 + 1, Tj+l = Zj4+1, 6j+1($j+1,yj+1) = ZQ, Zj42 =
Yj+2,-- > 2 = Yt, and hence d(z,y) = [ is automatic. In the same manner, one
shows prFlH’ y=0forall k, I withn; +1 <k, l<n, k#£L

(iii), (iv) These can be shown similarly to the proof of (ii).

(v) As pi%,lﬂ, =0 & pizq,,1+1, x = 0, we only need to see:

(5) pfzi,l—i-l, =0for0<k<n(k#ni_1+1), 0<1<n;,
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and
pﬁFlH’leform_1—|—1§k§m, n+1<1<n.

Both of these are easy to see.

(b) = (a) First, we show (2) by induction on j. It is clearly true for j =
0. Assume that & > 1 and the assertion holds for all j < k — 1. Let k =
ni—1 + ko for some i, ko with 1 < i <+¢, 1< ky <n; Let (z,y) € Rg. As
Ph 41 k1 # 0, (2,2) € Ry, 11, (2,y) € Ry for some z. By induction
hypothesis d(z,y) =k — 1, and d(x, z) = n;—1 + 1, by Remark 1. Thus

0i(2i,yi) = ko — 1, Zig1 = Yir1,--- 2t = Y3
81(:@,21) = ]., Lit1l = Zj4ly--os Lt = Z¢ -«
So 0i(xi,y:) < ko, Tit1 = Yit1, --- Tt = Yt, and hence d(z,y) < k. Also,

we have d(z,y) > k, since otherwise we would have (z,y) € R; for some
j < k —1, by induction hypothesis. Conversely, assume that d(z,y) = k.
Here, in view of Remark 1, we may let d(z,y) = k = n;—1 + ko for some 14
and ko with 2 < kg < n;. Then we must have (z,y) ETJ- for some j > k.
We now exclude the possibility that (x,y) € R; for some j > k + 1. Assume,

on the contrary, that (z,y) € R; for some j > k + 1. Then there is a path

T = Z(()l)a ZEZ); ces Z;(J))_p Z;(J)) =Yi, and Tit1 = Yit1,..., Tp = Yyp. Put

z = (Il, ey i1, Zl(ci)fl’ Lid1yeeey .Z‘t).
Then d(y,z) =n;—1+1 = (y,2) € Ry, _,+1, by Remark 1, and d(z,z) = k—1 =
(2,2) € Ri—1. So p"z.lq,—l"l‘l, k—1 #0. Asj>k+1>n;_1+3, pili71+17 k—1 =0,

by our assumption on the matrix L(®. This is a contradiction.
Next, we show that each I'; is distance-regular. Let x;,v;, 2}, y} € X;, with

0i(xi,yi) = 0i(x}, y}) = ko (0 < kg <n;). Then we must show:
©) Hus € Xi | 0i(wi, us) = lo, Oi(us,ys) = mo}|
= | {u; € X; | 0;(x), u;) = lo, 0;(us,y;) = mo}|

for all Iy, my with 0 < Iy, mg < n;. This is clearly true for Iy = 0 or mg = 0.
Thus we assume [y, mg > 1. Choose z; € X; for all j # i, and set

T= (21, vy Zicly iy Zidlyeovy 2t)s U= (21yc vy Zicly YisZidly--s 2t)s
T = (21, 00y Zicty Ty Ziddyeos 2)y U = (21, v vy Zic1y Uiy Zitds .oy 2t)-
Then d(Z,9) = d(Z', 7). By (2), we have:
[ € X| d(u) = nis + o, d(w ) = nis +mo}]
— {u € X| d(@,u) = nay +lo, d(w,7') = nes +mo}],
which implies

[ X1| - | Xima] - | {ws € Xi | 0i(ws,u5) = lo, Oi(ui,ys) = mo}
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=1Xq| - | X | {ws € X5 | 0, wi) = o, 05(ui,y;) =mo}|.

So we get (6).

(b) = (c) Here we denote the entries of the submatrix [L(®] of L(® just as
n (12) for i = 1,...,t. Define the polynomials wfl)(x) of degree i (0 <i <ny)
recursively by:

1 1
(@) =1, oY (2) =
1 1 1 1) (1 1 1 .
i (@) = b2y o (@) + a§ (@) + e wii @) (2 1),
Also, define
a(()1) _ agl) - = 0%(111) 0.
Then
(D (1) ;
Aiy =y, (A1) + ;" Ag for 0 <ig < ny.
Let i (2 <1i < t) be fixed. Define
@) =2 o) =0.
Then
Apiy 11 = Tby)(Abﬂ) +ai Ao+ + Apiy)-
Also, if we define

W) = 02 — o), af = )0,
then
Ansoyso = wé“mm,m) 05 (Ao + -+ Au ).
Assume now that wy), o, wm , . az(-z) (2 < ig < n;) are defined so
that

An7—1+j0 = wj(z) (Ani—l"l‘l) + a('i) (AO +oe Anq,—l)’ %(z) (0) =0

holds for all 1 < jy < ig. Define the polynomial wl +1( x) of degree ig 4+ 1 by:

w10+1( = zo+1 {WP l)( E;) (vo+---+ Uu)x
Uil (@) — 0 u @),
and a constant 04(-i)+1 by:

PN

1
o, =~ 600l 90).

o + a;,; o
Then
Ani71+io+1 - wz((:)—i-l(AniflJrl) + az('(l))-i—l(AO e Ani—l)'

Observe here that wl +1( )=0.
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(c) = (b) Here we must show the following: fori =1,... ¢,
(7) Apii1 Av=v Ap_i41 (0T < nia),
(8) AMJA AEJA =v® (Ao + -+ An;l) + agi)AbJrl + Céi)AbJ&
with cg) #0,
Ani 41 Aniitio = bgé)flAMHo—l + aﬁ-? Anii+io

9) 0 ‘
+ ¢ 1A ivio1 (2 <o < ng)

with b #0 (2 <ip < ng), e #0 (2 <idp <y — 1), ¢, =0,
(10) Ay i1 Ay=vD A (i +1 <1< n).

By (4), (7), and (10) are true. Next, we show (8) and (9). For ¢ = 1, we
only need to show (9) for 1 <[ < n;. By our assumption A;, = 1/)501)(141) for
0 < ip < ny. Since xwl(l)(ac) is a linear combination of wl(}r)l (x), wl(l)(x), e

(()1)(:0), AjA; is a linear combination of Ajy1, Ay, ..., Ag. Clearly, the coeffi-
cient of Ajyq1 #£0. As A1 A; = Zzzop’flAk, p’fl =0for k>1+2 and pll'l|r1 #0.
Since p¥, =0 < pi, =0, ph, =0if |k —1] > 2, and p§, # 0 if [k — | = 1. Let
i > 2. First, we show (9). By (3) and (4), for 1 <ip < n; we have:
(11)

(2)

AE"‘ioAni—l“Fl = wz(;)(AE-i-l)Ab-Fl + Qg (UO +e ’U'ﬂq,fl)AE-ﬁ-l'

As (0) =0 (1 <k <),

io+1
Ui @)ool (o v e = D v @)
ko=1
for some S, with Bi,41 # 0. Thus, for 2 <o < nj,
io+1 totl
Aniivio Anic 41 = D BroAnicytho = Brocty) (Ao + -+ + Anica):
ko=1 ko=1

i—1+ko
i—1+1l,ni—1+lo

by (3) and (11). Just as in the above argument, this implies that pZ

ni_1+ko
=0 for |ko — lo| > 2, and Doyt 1 tlo

(8). By (3) with ig = 2,

# 0 for |kg — lo| = 1. Next, we show

An_yp2 =aA% 4y +bAn_ 11+ o8 (Ao + -+ An,_,)

for some a, b with a # 0. So

Ab‘i‘l AE-’-l = ’UJ(AQ + -4 Anq,,l) + agi)Ab_H + Cgi)AM_i_Q
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with céi) # 0, where we put

@ @ _

— _g ! -1y ) _ -1
w=-—a a3, a =-—a b c =a .

It remains to see that w = v(®. For 0 < k < n;_1, let (x,y) € Ry. Then
Ti=Yi..., v =yp. Thus pf ., =00, and hence w = v,

(¢) < (d) This is straightforward.

(a) & (e) Note that (2) is equivalent to: for i =1,...,¢,

(¢5,y:) € RY & 8i(wiy) =5 (0<j<n;) (ct [2, Prop. 1.1, p. 189]). [

Remark 3. (1) When X is a weak metric scheme, for ¢ = 1,...,t the submatrix
[L®)] of L® will be denoted by:
a(()i) b(()z)
c(lz) a(lz) bgl)
(12) (L] = -
Cgi)q ag-)q bgi)q
) all

Observe here that aéi) =0, béi) =, cgi) =Un, ,-
(2) Put

PO @) = 0§ (@) + -+ el (@), O @) =0 (@) 4+ D) 2 <i <)

Then ) (z) is a polynomial of degree n; for 1 < i < t. Using (3), one can

show by induction on 7 that, for i = 2,...,t,
i—1

(13) Aot Ay = 3000 (A ),
k=1

where ng) = f;;ﬂ (1 +agl) +-- -+Oz§lll)) with the understanding that 01@1 =1

(3) FOI‘iZQ,...,t, 1 Siogni,
AM-H'O = wz((f) (AE-Fl) + az(';)gffz?,lJrl(Aw-i-l%

where 5&)71 41() is a polynomial with real coefficients of degree n;_; + 1.
Indeed, from (3) and (13), we have

i—1
(14) Ani_1+io = %? (Aniy+1) + 0%('3) Z Cz(;)w(k) (Anj_y+1)-
k=1
Multiplying both sides of (14) by A,, ,+1 and using (4), we get:
v(ifl)AbJﬂ_O

= o0y (A, 1)
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1—2
ol) > ofp® (Any_+1)An, o1 + agé)iﬁ(i_l)(AwH)Awﬂ
k=1

= U(i_l)fﬁg) (An,_i41)

i—2
o137 D™ W) A,y + 0T (Any 1) An, a1}

This implies
Ab“rio = wz(s) (Am +1) + am)gnl 1+1(AH+1)’

where we put

60 (@) = o {Zc‘%‘“ (") + 40D (@)e }

Proposition 4. Let X = (X = X1 x -+ x Xy, {R;}7_) = XMW 1. x0)
be a weak metric scheme with X% = (X, {R§i)}?;0). Let the entries of the
submatriz [LD] of L@ be as in (12). Then

(a)
(15) al(l) + bl(l) + cl(l) =0 fori>2,

v, 0<I<n;andl # 1,

(7) (1) i) _ )
(16) a +bl +¢ _{U(l)(vo+vl+"'+vnill)a 1 =1.

Here c(i) =0, =0 fori=1,.

(b) Vni_i+io *v(l)b(l)bg)~ b(z 1/c () (Z ~cz(-z) fori=1,...,t, 2 <iy<n,;.
(c) v® b((f)Zb(lz)Z~~Zb£fi)71forz:1,...,t
(d) vniflzc(li)gcg)§~~§cgf3 fori=1,...,t

Proof. (a) The result follows from Y7 Opnl 41 = = v, Theorem 2(b)(i), (iv),
(v), and (12).

: koo o (@ _ (@)
(b) Since pijvk = DikVs5 ,U'V’qul"l‘i()bio = Uni71+i0+1ci0+1' So

’U(Z) _ Céz)vnifﬁr? _ C(Z)C:(;)Unl 1+3 L cél) cgé)vnl 1+i0
R TR

(c) Let z,y € X with d(x,y) = ni—1 +i0 (1 < ip < n; —1). Let w be
an element of X such that d(z,w) = n;—1 + 1, d(w,y) = nj—1 +ip + 1. As
0i(xi,yi) = i, we can choose z; € Xi,m Oi(xi,zi) =10 — 1, 0i(z,vy:) = L.
Then 0;(z;,w;) < ip. Also, 9;(z;,w;) > 4o, since otherwise we would have
Oi(wi,yi) < dg. We put z = (21,...,25-2, Zi—1, Zis Tit1,- -, LTt), Where z;_1 €
Xi—1 is an element with 9;—1(z;—1,2;—1) = mn;—1. Note here that such an
zi—1 can be chosen, since, if necessary, after replacing (i — 1)th component
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x;—1 of x we may assume {a;—1 € X;—1 | Oi—1(xi—1,0,-1) = ni—1} # 2.
Then d(z,z) = n;—1 +i9p — 1. Observe that this holds even for ig = 1. Also,
d(w, z) =mn;—1 + 9. This shows that bgé) < bgé)_l for 1 <ip<mn; —1.

(d) Let x,z € X, with d(z,2) =n;—1 +i0+1 (1 <ig <n;—1). Choose y; €
X; with 01(301,3/1) = 19, 01(;(/1,21) =1 Puty= (Il, ey L1, Yiy it 1y - e ,l‘t).
Then d(x,y) = ni—1+1io. Let w be an element of X such that d(z, w) = n;_1+1,
d(w,y) =n;—1+1io— 1. Just as in the proof of (c), we have 9;(w;, z;) = ip, and

hence d(w, z) = n;—1 + 9. This shows cgz) < cgz)ﬂ for 1 <ip<mn; —1. O

4. Parameters of weak metric schemes

Let X = (X = X3 x -+ X Xt,{Rj}?:O) =xW ... 1™ be a symmetric
association scheme which is given as the wreath product of the symmetric as-
sociation schemes X = (X, {R;l)};io). Then we will determine some of the
parameters of X, such as valencies, multiplicities, the adjacency matrices, the
irreducible idempotents, P-matrix and @-matrix. Further, we will determine
the first intersection matrix for each level and the first dual intersection ma-
trix for each level. Also, we will prove Theorem 11 which is an analogue of
Theorem 1.3 in [2, p. 197].

In below, all the matrices in the i-th factor of tensor products are of size | Xj]|
for i = 1,...,t, and accordingly I and J will denote respectively the identity
and all-one matrices of various sizes.

Theorem 5. Let X = (X = X; x -+ x Xy, {R;}1_y) = XD -0 XD pe
a symmetric association scheme which is given as the wreath product of the

symmetric association schemes XV = (X, {Ry) #0).- Then we have the
following.

(a) |Xq]--- | Xiz] vgz) = U, i4ip Jor 1 < i < t,1 <y <my, ori=1,
io = 0.

(b) )\iiz ?_LO’UJ‘:|X1|"-|Xi|f07”i:1,...,t.

(c) | Xe| -+ | Xig1] mgz) = Mo for 1 <0 <t, 1 <ig < ny, ori =t,

~
o
I
\./& o~

=S Tomy = |X¢| | Xi| fori=1,... .t

IS
i

—_
@

A=AV eIg -@I=I, A4=4API®---aI,...,
A=AV QI® I, Apyn=JoAP el --oI,...,
(7))  Apin,=J0AP0I® --®I,...,
Anysig=J @ @J@AD @I 1 (1<iy<n),...,
App 1 =J®--0J0AY, ..., 4,=J0 0] AY,
where in (17) there are (i — 1) factors of J.
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@ EY Ve E = x4,
® Eétq) 2 EY,

E,=EV® --9E™eEY,
Bpi=EV® 0B B VeI,

Ent+nt71 = E(()l) K- Q E(()t72) ® E(t—l) ® I,

nt—1
Errvio = Bo' ® - © By V@ E) @I @ ®1 (1<io<m)

En_2+1:E£1)®I®"'®]7..., En:Er(zll)®I®"'®]-

Fori=1,2,....t, let P and Q) be respectively the P-matriz and the Q-
matriz of X . For these, we put
(2) (2)

| )

1 Y1 " Un, 1 Wz
1 1
@ = (i) _
= . . Q »
P(L) Q(l)
1 1
ri1| v - oy, Upybl o0 Upy | oo Uny o+l “°° Unyqy | Uny_141°°"Un ]
1 V1 Un, Uny+1 ’Uni2 ------ Vny_at1 Ve,
A\ P®
1 V1 Up, Vny 1 Uny | oo Vni a1 Uny_s
1 V1 Un, Uny41 Uny | "70oee
- M )\t7215(t—1) 0
(g) P = 1 U1 Upy Upy41 Uny | covcce
1 V1 Vpy | e
. A\ P@ 0 0
1 vy v, | e
1 ------
= 1 ...... ]
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T my - Mp, | Mpgr- Mgy | oo Maz41 - May | Mg 41 ° - Mg
1 my1 My, Mp+1 Mag—y | = Maz+1 May
.. <1
. e ol 12QW
1 mi My, Mp,+1 M=y | " Mpz+1 Mag
1 mi My, My 41 Mt | -
o (2
e . 1z Q@ 0
(h) Q 1 mi My, My t1 Mary | oo
1 mi My, | | e
A(t—1
. MtQ< ) 0 0
1 mi My, | | e
]
: A (t
. /H+1Q( ) 0 0 0
0 N I,

Proof. (a) Let (z1,22,...,2¢) € X. Then
UM-‘,—'L'O :l {(yla' ey Yis Tig1y - - .,.Z't) eX | (xuyz) S RZ(;)H
_ (1)
=Xaf- - [ Ximavgy) -

(b) Induction on i. Fori =1, \y = Y71 v; = >0, Uj(»l) = |X1], by (a).

Assume that it holds for ¢ (i > 1). Then, again by (a),

Aig1 =N + Z Vj
j=ni+1

Tl

_ (i+1)

= [Xu] - X XX DD vy
10=1

= |Xa| - [ Xl + [ Xl [ X (1 X = 1)

= 1 Xa] - [ Xigal.

(e), (f) These can be shown directly. Or these will follow by generalizing
the results in Section 4 of [9] stated for the wreath product of two association
schemes. Observe, however, that in what will follow we reversed the order
of factors in tensor product expressions of adjacency matrices and irreducible
idempotents.

(c) From (f),

Mai+io = B4

= trE(()l) T trE(()i_l)trEx) | Xipa] - | X
= |X] - [ Xiga | M.

(d) Reverse induction on 4, starting from t¢.
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(g) For the wreath product of two association schemes, this is also stated in
Section 4 of [9]. The proof is left to the reader, as it can be shown just as in
(h) below.

(h)
En1+1+10 - E(l) SR ®E(’L_1) ®E('L) RIR---®R1

= XTI ® | X T ® X 12%(2014(1 QI -1
7=0

! (@) (i)
= |X|” {umz Je-e0ieA0le. oI
j=1
+ Mgt/ @ @JRIRI®- -1}

2
= X[ i1 Y a5 Ani g+ Marrraio (Ao + AL+ + An )},
j=1

where the last equality is obtained by replacing various J by the corresponding
sum of adjacency matrices for X9) for j =i —1,i—2,...,1. O

Remark 6. From the expression of P in Theorem 5 (g), we have:

05,080,000 =080, 05, 00 0,0,
_,_/ N—_——
nir1+1 Mi—1

Theorem 7. Let X = (X = Xy x -+ x X, {R;}1—g) = XM -0 X0 pe
a symmetric association scheme which is given as the wreath product of the
symmetric association schemes X = (X, {Ry)}?:'o).

(a) The first intersection matriz L) = (" 41, Do<ki<n of level i is

(18)
o0 1

(0

Vo V1 e Un,
N LY

0 v(“In_ﬂ

where the upper left diagonal block matriz in (18) is the zero matriz of size

ni—1 + 1 (with rows and columns indexed by 0,1,...,n;_1), and I:l(i) s the

submatriz (pgl) Ji<k,i<n; Of the first intersection matric L( R (pgl) Jo<k,i<n;

of X0,
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In particular, the submatriz [L()] = (pfh,lﬂ,z)niflgk,lgﬂ of L™ is

0 v 0 ... 0
Un;_y
(19) O =1 o | xnab"”
0

(b) The first dual intersection matriz M®) = (qfli—HJru)ogk,lgn of level i is

(20)

m@ 1
0 : 0
()
m
() _ | Mo Mgy p
M = pis M) '
0 m("')In_m

where the upper left diagonal block matriz in (20) is the zero matriz of size

Tit1 + 1 (with rows and columns indexed by 0,1,... ,7;41), and Ml(i) is the
submatriz (qﬁ)k)lgk,lgm of the first intersection matriz Ml(l) = (qg)k)ogk,lgm
of X,

In particular, the submatriz [M®)] = (qﬁq,—ﬂﬂ,z)mékiﬁnﬁ of M s

0 | m@®o0 ... 0
Moy
= (4)

(21) [M®] = 0 pit1 M

0
Proof. Here we will give only a proof for (b). From Theorem 5(f),
B 0 B
=(EMe-0El VeElale o)
(EVg. 9B VeEY 9l o)
= (X - X ) T'EV @ @B Ve EY o EY 9lw- 01

ng
= X170 ping) BV e @Bl VeE)ele- oI
k=1

+mP5EV e B VoEP 9I®- - o1}
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ni
= x| {Z i1 @ B+ mD8(By + -+ + Em)} ,
k=1
where the last equality is obtained by replacing various I by the corresponding
sum of irreducible idempotents for X0, for j =i +1,...,t
Let j >4, 1<l <nj,orlet j=t, [ =0. Then

Ernmr10 Bnggn
_EV e 9B Ve E ) 9le- 0lelole- o)
O(E(gl)®"'®E(()i_1)®E(()i)®E(gi+1)®"'®E(gj_1)®El(j)®I®.-.®I)
X 'EV @ 01X 1BV @ EY o B @ | X T @ -
®|X, 1" URIoEP ®I®- -1
= | X| ' mir 1 B 1,

where we note that

EY o B = X, 'EY, 1o EY = X" 'm 1.
Similarly to the just above case, one shows, for j < 4, that En711 0
Ergr = X[ 7'm B a

Remark 8. )\i,ngi) equals [L("] except for the (2,1) entry, namely the (2,1)
entry of )\i_ngz) is \io1 = Z%vj, whereas that of [L")] is v,, , (cf. (19)).
Also, /Li+1M1(i) equals [M )] except for the (2,1) entry, namely the (2,1) entry

of uH_lMl(Z) is pip1 = Z?’:Ol m;, whereas that of [M®] is mz= (cf. (21)).

Proposition 9. Let X = (X = X1 x -+ x X, {R;}7—o) = XMW 1.0 XM pe
a symmetric association scheme which is gien as the wreath product of the
symmetric association schemes XV = (X, {R;l)};io). Then we have:

(a) Qéi), ceey 953) are real numbers and eigenvalues of LD fori=1,2,...,t.
Further, |9§1)| <o® fori=1,2,...,t, 0<j<n.
If in addition X is a weak metric scheme, then we have:
(b)
8 (@) =1, ¥ (@) =2,
1, 1 1 1 1 )
(22)  euly) (@) = (= a ) )ug ) (@) = 0 hu o (@) (2 <o <)
04(()1) :a(ll) :~~:a$}1 =0 for2 <1<,

0 (@) =z, w“"< )= @ — o),
(23) DD (@) = (- al_ il (x) — bl 2@5’ »(2)

+a£0) 1(vo + -+ +p, ) (3 <o < ),
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o) 0 )11 ) ) 010 <)

Proof. (a) The first statement follows from PL®P~1 = diag(6}”,...,6%) and
the second one does from Perron-Frobenius’ theorem.
(b) This follows from the proof (b) = (c) of Theorem 2. O

Lemma 10. Let X = (X = Xq x -+ x X¢, {R;}1—g) = XD - %W be a weak
metric scheme. Then, for 2 <1 <t,

i . 1 9(1) . 9(_?)
(25) (1+ aé” +- o), = (=™ il
" C(i)c(z) e c(l)
2 =3 ng
Proof. From (24) and in view of Remark 8, with Oééi) — 1 we have:
[ 1 1P
by ol
aél) ~(’L) a:(;) 0
(26) Bgz) ~(z) éy) ' =
L bipfg a"Elii)fl 55}3 i _a’élii)_ _0_

if the first intersection matrix Lgi) of X is given by
'~(1) bff) B .

~(1) agw bgl)
éél) aé@) 5(21)

DL, W
Zz> <z>

By Remark 8 and the shape of P (cf. Theorem 5(g)), (25) is equivalent to:

(—nmpt) )
~(i) ~(i) ... Esf-) )

(27) (1+ay) +- +al))=
with P() = (pkz))0<k 1<n; the P-matrix of x@,
It can be shown (cf. [2, Theorem 1.3, p. 197]) that, if we define
& Py(x) = (= 1) P () = 5P a() (2 < < ma),
Po(z) =1, Pi(x) =
and

Pua(a) = (@ — @) Py, (x) — 0 Poy 1 (@),
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then

1 i i
Poa(x) = m(xfpéf)(xfp(ﬁ)) (93*1751)1)

= f_pm ZP

So we see that Z?:o P;(0) = RHS of (27), and (26) is satisfied with a(z)

agl), e an) respectively replaced by Py(0), Py(0),. .., P,,(0). As X is a met-

ric scheme, the square matrix on the LHS of (26) is invertible, and hence
aél) = PO(O)7 a(z) P5(0),. aﬁ}} = P,,(0). In particular, Z;.“:'O P;(0) =
aéi) + aéi) -+ aﬁf}. d
Theorem 11. Let X = (X = Xy x -+ x X3, {R;}7—) = XM - X be a

weak metric scheme. Assume ¥\ (z)’s are as in (22) and (23). Let wm+1( x)
be the polynomial of degree ni + 1 defined by:

(@) = (@ — aD)p® (@) — o0 9 ().

Then
1
(28) ¢n1+1( T) = W@ - 9(()1))(55 - 97%)+1)($ - 97%)+2) s (= 97%)
2 ni
(29) = (z—05") Z v (@)
j=0

For2<i<t, let wn +1( x) be the polynomial of degree n; + 1 defined by:
(30)

U (@) = (@ — al)ed (@) — o8 el (@) + ol (o + -+ vn, o + 7,
with
__ ( )n7+19(1 9%“4_1 . 9%)
= :
Cé’) .. C;Z)
Then
i 1 i i i
(31) wéi)ﬂ(ﬂc) = ﬁ(ﬂc - 9(() ))(30 - 97(17,)+1+1) (- Hil_i))
c2 e cn7
(32) = (@ —05") > v} ()
§=0
with
(,1)m9& . Q(i)

() o Mit1+1 n;
(33) W s—me o
2

- Cn;
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Note here that
(34) T = —Géi)wéi) () = —U(i)lbéi) (x).
Proof. As w,(f)(O) 0for 2 <i<t 1<Ek<n, éi)(ac) is the constant

polynomial in (33) if (3 ( 1) and (32) are true.
Let ¢ = 1. From (22), we see that

(35) B . = E :
ﬁzll) (z) ?/filll)ﬂ( )

where B = z1I,,, 41 — {[LM]. So, by multiplying the adjoint Adj(B) on both
sides, we get:

§9(x) 0
M)

(36) |B : = Adj(B)
§l11) (x) 1/)7(111)“( )

By looking at the first component, from (36) we have:

1 1
1Bl =" - Dyl (@)

So

1
(37) Vi1 (#) = <7 char poly([L1)),
02 P cnl

where char poly([L()]) is an abbreviation for the characteristic polynomial of
[L(M)]. On the other hand, from PLM) P~ = diag(6, (1) 9(1 . ..,97(11)) and (18),
we have:

char poly([L(l)])(:c — 961))"7”1
=char poly(L™M)
=(x—05") - (x—0D).
In view of Remark 6, this implies that
(38) char poly([LV]) = (@ = 05) (@ = 052, 1) -+ (= — 0.

Now, (28) follows from (37) and (38). Also, we have (29) by multiplying both
sides of (35) by [1---1] on the left (cf. (15)).
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Let ¢ > 2. From (23), (24), and (30), we see that

ro(0)
z) + Aie C ) T
Yo ((2) ! wyf ()
(i) " (x<) ) K
wQZ (z) + 042Z Ai-1 0
(39) C . ,
: 0
(1)( )+ Oén )\l N L Ax) |
where A(x) = wg)ﬂ( ) — (b(z)fla 9 1+ a1, and C = 21, 41 —

tO—1 L) (cf. (12), Remark 8), with

F0 A -
v(@ a(lz) cg)

(#) (4) (2)
; by as Cs
N L) =

b<z>72 <z>71 RO
O] (i)

L ni—1 On;

Putting 2 = 0 in (39) and multiplying both sides on the left by [1--- 1], we get:

VD@5 (@) + (1 + ol + -+ ald)Ai1)
(b(z)fla 9) 1+ a(i)a(i)))\-,l
o (bm O 4 a@al)a_

(cf. (16), (25), (30), (33), (34)). So A(x) = ¢\, (x). Taking this into
consideration, we have (32) after multiplying both sides of (39) on the left by
[1---1].

On the other hand,

(& — 65 (@ —6) - (& — 69)
= det(zl,41 — 'LW)
= det D

= izt (g — Oéi))m char poly()\i,ngi)),
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where
xln, * 0
D= 0 xIm_H — t()\i_lL(i)) 0
0 0 (z — v s

D can be obtained from zI,,1 — 'L, by first adding the column (ni—1+1)
to each of the columns one through n; 1 and then adding the columns one
through n;_; to the column (n;_1 + 1).
So, by Remark 6,

char poly()\i,ngi)) =(z— Qéi))(x — o

niy1+1

) (z— D).

Now, after multiplying both sides of (39) by Adj(C) on the left and looking at
the second component, we get:

x char poly()\i_ngi)) =|C',

where C' is the matrix obtained from C' by replacing the second column by
t[:cwéz) () 70 --- 0 P (x)]. It is now easy to see that

n;+1
1= (" e @)
Thus char poly(Ai,ngi)) = céi) - ~c$f31/)7(:3+1(x). This shows (31). O

5. Weak cometric schemes

Let X = (X = X1 x -+ x Xy, {Rj}]—) = XM .2 2® be the symmetric
association scheme which is given as the wreath product of the symmetric asso-
ciation schemes X" = (X, {Ry) %) (cf. Section 2). Then such a symmetric
association scheme X will be called a weak cometric scheme if it satisfies the
equivalent conditions in Theorem 13.

Lemma 12. Let Wy,..., W,,, W{,..., W/} (m,n € Z>q), S, T be matrices

with entries in a field. Assume that Wy, ..., Wy,, W{,..., W/ are nonzero. If
W@ - OWn®SW|® - W, =W ® - @Wn,@TW|®--- W),
then we have S =T.

Proof. For this, we only need to show:
WeS=WeTandW #0, or SQW =T@Wand W #0 = S =T.

But this is trivial to see. (I
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Theorem 13. The following are equivalent.
(a)

(i) The submatriz [M®)] = (qui—ﬂﬂ, i<k, 1<m; of

MY = (qF 11 o<k, i<n

s a tridiagonal matriz with nonzero off-diagonal entries for i =1, 2,
Lt
Moreover, M9 has the following entries.
(i) (¢ 141 Dmrrick, 1<n = mD1,
(i) @y, o = M for 0 <k < i,
(iv) mitit my for 0 <1 < 1,
)

I+, 1 =
(v) all the other entries not appearing in (i)-(iv) are zeros.

(b) There are polynomials with real coefficients (gﬁgt) (x) of degree 0 (qbét) () =

| X171, ](;)(:L') of degree k fori = 1,...,t, 1 < k < n;, with qS,(;)(O) =0,

(1 <i<t-—1), and real numbers 6(()t) =...= @(ft) =0, ﬂit_l), ce ,(ftj), cey
ﬂil), e 7(111) such that
(40) Brgrtio = 94 (Bmzren) + By (Bo + - + Eary)

fori=1,2...)t, 1 <ig<n;, ori=t, ig=0.
(¢) g-numbers satisfy

4, mivitio = ¢§Z) (wﬁl)) + 51(5) (gjo + -+ + @5, wigy)

fori=1,....t, 1 <ig<n;, ori=t, ip=0, j=0,1,...,n. 4
Here ﬂi(g) s are the same as in (b), d)gz) (z) = |X| ¢§Z)(|X|flz), and wél) =
45, mirT+1- .

(d) 20 = (X3, {Ry)}?go) is a cometric scheme fori=1,... t.

Proof. First, we note the following: fori =1,...,t, 1 <ig <ng;,ori=t, ig =
0,
(41) Errrrrio © B1 = | X[ my Brgiy (0 <1< T577).

For this, we need to see: fort > j >4, 1<k <mnj,orj=t, k=0,

_ —1
Eritio © Bk = 1 X7 mark Ercrvio-

Mit1

But this can be shown just as in the proof of Theorem 7.

(a) = (b) Assume that [M®)] = (q,’;—+1 DmTT<k, 1<my is given by:
oo
g%z) e(lz) fl(z)
(42) (M) = '
97(1?4 eizii)_fl fr(z? 1
g el
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Observe here that e((f) =0, foi) =m0, gy) = My
Define the polynomials d)gt) (z) of degree i (0 < ¢ < n;) recursively by:
@) =1x7", o (@) = =,
26 (2) = [0 (@) + 6 (@) + g1l (2) (i > 1),
Also, define ﬂ(()t) = Y) == ,(ft) = 0. Then
d)(t)( Ey)+ 6§$)E0 for 0 < ip < ngy.

Here the multiphcatlon is the Hadamard product and we understand that
0 (E1) = X7\ = Ey.
Starting from ¢ — 1, we apply an inductive argument to show (40) for each
izt—l,...,l, 1§’LQ S?’Li.
Before proceeding further, we note, using (42), that (a) is equivalent to:

(43) Epery10 B = | X 'muErrr (0 <1 <7ygn),

(44)

Eﬁﬂ 0 Brrrry1 = [X|7Hm @ (Bo + -+ Brrr) + € Brri1 + 08 B0}
with 92 7é 0,

(45)

Ergz+1 © Errtio
= [X|” 1{fz Brrtio—1 + €l )Emﬂ(; + gfshEmﬂoﬂ} (2 <ip <)
with £ £0 (2 <io <my), g\ #0 (2 <o <ni—1), ¢, =0,
(46) Ermri10 B = |X|™ 'm E, (M +1<1<n).
Define d)(li) (z) ==, 6(1) = 0. Then
= 01 () + 81 (Bo + -+ + Eazy):
Also, if we define

i N1 ; . PN
o) (x) = g5 (1X[2? — ex), B = —g) m®),

then 4
Eﬁ ¢’2 ( Errr1) + B (o + Enr)-

Assume that (;51 - qﬁ , 1 , e ,Bl;) (2<ip< nl) are defined so that
Eniitgo = ¢§-0) (Bri+1) + 5](-0) (Eo + -+ Eapy),

and ¢\ (0) = 0 holds for all 1 < jo < io.
Define the polynomial ‘f% +1( x) and 6( o1 respectively by:
61 (2) = g2 {1X 120l () + 8 (mo + -+ + mer)a
— FL100) (@) — el o) (@)},
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ﬁfill = - ggé)ﬂl( 1(01)7151(5)71 + 65?@?)-
Then _ _
Ermtio+1 = ¢§é)+1(Em+1) + @'(ZL(EO + o+ By
Note here that Qﬁgz)Jrl(O) = 0. This shows (40).
(b) = (a) We have to show (43)-(46). By (41), (43), and (46) hold. Let
it = t. Then we only need to show (45) for 1 < iy < n;. By our as-

sumption, F;, = qbl([t)) (E7) for 0 < ip < mg. Since :Eqbl([t)) (x) is a linear com-

bination of gbgz)Jrl(:E), ¢§§) (x),... ,gbét) (), E1 o E;, is a linear combination of
Eiyt1, Eiy, ..., Eo. Clearly, the coefficient of Ej 41 is not zero. This says

s, = 0 for j > io +2, and qi;, # 0 for j = io+1. As Mg = Midy;, 4i; =
0 qf; =0. Soqf;, = 0if |j —ig| > 2, and ¢f; # 0if [j —io| = 1.
Let ¢ < t¢— 1. First, we show (45). By our assumption (40) and (41),
Errv1 © Evvio

Mi41 MNi41

=6\ (Brrrr1) © Bt + 1 X716 (mo + -+ mimes) By

10
So, if we put
10+1

2\ (x) + 1 X[TBY (mo + -+ mm)r =Y €0 ()
j=0
for some €; with €;,11 # 0, then, by (40),
Erm+1 © Engr+io
10+1 () 10+1
== B (Bo+ -+ Brmr) + Y, €5Bmr1y

j=0 j=1
By the same argument as above, q:—?ﬁon—ﬂﬂo = 0 if |jo — i0| > 2, and
Gy i # 0 f [jo — do| = 1. Next, we show (44). By (40) with io = 2,
we have:

Errts = |X|eBrri1 © Bner1 + fEarin + 85 (Bo + -+ + Enerr)

for some e, f with e # 0. So, taking the proof of Theorem 7 into account, we
get:
410 Brern = | X|7Hm D (Bo + -+ o) + €8 Bt + 08 B2}

MNit1 MNit1

with géi) # 0, where we put e(li) = —e lf, géi) =e L.
(b) < (c) This is straightforward.
(b) & (d) Fori=1,...,¢ 1<ig<mnyori=t, igp =0, put

) (@) = [Xa| - 1Xima] 65 (1 Xa] -+ [XimaD) ™ @) + B0 1G]
Then we see that (40) is equivalent to:
EVe-- 0B Mool EMele oI
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=E’® - 9E VeEYeI® 0L
In view of Lemma 12, this in turn is equivalent to Ez(;) = CI)Z(-? (Ey)) (cf. [2,
pp. 193-194]). O

6. An example

Let X = (X, {R;}}—o) be any symmetric association scheme. Let A be the
Bose-Mesner algebra of X generated by the adjacency matrices Ag, A1, ..., A,
€ M x|(C), p;?l the intersection numbers of X, L; = (p?l) (j =0,1,...,n) the
intersection matrices of X, and let B be the subalgebra of M,,1(C) generated
by Lo,L1,...,L,. Then the map A — B (A; — L;) is an isomorphism as
algebras over C.

In view of this isomorphism and since |X| is much bigger then n + 1, we
will express the modified polynomial relations for H (4, 3, 5;2) below in terms
of intersection matrices. For this example, observe that |X| = 4096, while
n+1=13.

Now, we consider the weak Hamming scheme H (4, 3,5;2) = H(4,2)1H(3,2)?
H(5,2), which is associated with the poset Py = 41 & 31 @ 51.

The P-matrices of H(4,2), H(3,2), H(5,2) are respectively given by
1
2

15 10 5 1
14 6 4 1 L3 3 1 1519 5 1
12 0 —-2-1 11 211 11 -2 2 1 1 .
1to-20 1 ) 7 5377 ), 121232 5 1 -1 ], and the P-matrix of
1-20 2 -1 1-33 -1 1-3 2 2 -3 1
1-46 -4 1 - - - -
1-510 -10 5 -1
H(4,3,5;2) is

14 6 4 1 48 48 16 640 1280 1280 640 128

14 6 4 1 48 48 16 384 9256 —256 —384 —128

14 6 4 1 48 48 16 128 —256 —256 128 128

14 6 4 1 48 48 16 —128 —256 256 128 —128

14 6 4 1 48 48 16 —384 256 256 —384 128

14 6 4 1 48 48 16 —640 1280 —1280 640 —128

14 6 4 1 16 —16-16 0 0 0 0 0

14 6 4 1 -16-16 16 0 0 0 0 0

14 6 4 1 —48 48 —16 0 0 0 0 0

12 0-2-10 0 0 0 0 0 0 0

10-201 0 0 0 0 0 0 0 0

1-20 2-10 0 0 0 0 0 0 0

1-46 -41 0 0 0 0 0 0 0 0
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., 12) are respectively given by:

Intersection matrices L; (i =0,1,..

T 1
0000000000006

[elslelslalelolelelolesNol]
[elslolslelelelelalole o]
[elslalelelelolelelolelol]
[elslalelelelelelololelol]
[slslalelelelelelalolelol]
[elslalelelelolelalolelol]
[elelelelolcelolelelelele]
[elelolololelelelelelelelw)
ONOMOOOOOOOOO
COFOLOOOOOOOO
ONOMOOOOOOOOO
[elelolololelolelelelelolw)
L |

T 1
[elelelolelelolelelolelelo]

[elelaslelalelolelelelalje)
[elelalelalelalelololylel)
[elelslelaslelaleleljelel)
OO0 O—HOOOO
OCOO0O0O0O0O—-HOOOOO
[elelolelelelolelelelelol)
[elololelelolelelelelelele]
iai=lelolelelolelolelelelo]
(=l olelelelolelelelelelole]
[sloljelololelelelelolole]
OCOOHOOOOOO0OOO
[elolelelolelelelelelolole]
L |

—
ocococoocooocooooR

cooooocooocooRo
coocooocoococoRoo
ococooocooocoRooco
coooocooBoooo

coococoloocoocooo

00000000 ~ N
LLLLLoFocooooo

N0
0000030400000

[olelolololelololelelelele]
OO0 OO0OTFOOOOOO
[elejelelelelclelelololelwo]
OOOOO0OTFOOOOOO

[olololololelolelelelelele]
L I

|
N

~

|
<

~

I
©
~

T 1
[elele]e]elelelelelelelah)
[elele]elelelololelele)s ]
[elele]eleleleleleleh lel]
[elele]e]elelelele) Jele]]
[elele]e]leleleleal Jele]e]]
[elelololeleleob jelelelel)
COO0O0OOFOOOOOO
COO0O0OTFOOOOOOO
OOO—HOOOOOOOOO
OONOFOOOOOOOO
ONOMOOOOOOOOO
FONOOOOOOOOOoO

[=lololololelololelelelele)
L I

T 1
[elelelelelelelelelelelahs ]
[elelelelelalelolelele)s ]
[eleleleleleleleleleh lel]
[elelelelelelelelal Jelel]
[elelelelelalele) Jele]e]]
[elelololeleleob jelelelelw]
COO0O0O0OFOOOOOO
COO0OCOFOOOOOOO
(=l olelelelolelelelelelole]
FONOOOOOOO0OOO
OMNMOMOOOOOO0OOO
OONOFOOOOOOOO

OOOHOOOOOOOOO
L I

I
3

I
)
~

T 1
OOOOOOOOOOOO%

<+ N
coococoooccooRc COOOOO000000OE 0O0000000ROHO

cooocoococoooRoco

coooocoooRooo

RRRXRoPocococooo
coocooroooo000
SISISISICRISISISISISIS
coocoowvooooooo
SISISISICRISISISISISIS
coocoo-ooo0000

0
OOOOOOOOOOOHO

o _ O
[elelelolelololelolol o)
N ©

<
(elelelelelololeloldlels ]
™ 0

N
COO0O0O0OO0O—HOVOO
0 M

[elelelelelelel= BN
4444444405000
666666662

cococoococooboococo
cocococcocooRoooco

cococooocococXoooo

[elololelolelelelojelelole]
OO0 O0OOFOOOO
[eloleleleleleleNeolelolol]
OO0 O0O0OFOOOO
[elololelalelelelolelelele]
e —
|
3

|

coococooocoococolo

cococoococoooo¥oo

cocooco¥oocooocoo

coococoo¥ooococoo
coocoococo~oO000O
coooooOoTOo000
[SIStSIcIototoToto ottt

coocooocooooloo
occocoocoocooRoo

cocoocoooocooRoo
j=lelelalelelelelelelylele]
[=l=lelelelelelelelels ole)
j=lelelelelelelelelelelale]
[=lelelelelelelelelels fole)
cooooooooo—oo

]
(=)
—

3

L |
0
OOOOOOOOOOHOO

cocoocooocBooco
cocoocooocBooco
[lejelelelelelelalylelala]

[elslelolelelelelel felole]
[elelslaleleleleleielalale}

OOO0O0O0O0OTFOOOOO COOO0OOOOoOOoFOoOO

Il
0
3

[lelelolololollelele]e]w]
e —
|

~
~

[slejelelelelelelellelele]

|
=
~

coocoocococoococooy
cocoocoocoococo®
cocoocoocoocooo®
coocoococooccooo—
coocooocooooooW
coocooocoooooo©
coooooo00o0ow

[elelalolelelelelelololely)
e —

y L=

[=leleleleleleleleleleNelw)
[elelelelelelelelololeb o)

[elelalolelelolelelolollo]
e —

,
3

Finally, we have the result about modified polynomial relations of intersec-

tion matrices (cf. Theorem 2(c)).

LI +1,

iL4_g
2471 3

Ll) L4 =

5

3

1
AL

—L? -2l L3=

1
2

L17 L2
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Ls, Lg = 31—2L§—;(I+L1+...+L4)’ L, = ﬁLg*gLs,

Lg, Lg = %Lgfg(IJrLlJr...JrLﬁ’ Lo = ngi %Ls,
L= 503311648 5 1;):136L§ + §(I+ Li+-+ L),

Lz = 32212;54720@ - 65;36Lg + %?)LS'
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