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WEAK METRIC AND WEAK COMETRIC SCHEMES

Dae San Kim and Gil Chun Kim

Abstract. The notion of weak metric and weak cometric schemes are
introduced as a generalization of metric and cometric schemes. They are
given as the wreath product of a finite number of symmetric association
schemes satisfying certain equivalent conditions which are analogous to
the ones for metric or cometric schemes. We characterize those schemes
and determine some of their parameters.

1. Introduction

Let Fq be the finite field with q elements, and let P = ([n],≤) be a poset on
the underlying set [n] = {1, 2, . . . , n} of coordinate positions of vectors in Fn

q .
Then the P-weight wP is the function on Fn

q which is given by

wP(x) = |{i ∈ [n] | i ≤ j for some j ∈ Supp(x)}|.

Here Supp(x) = {j ∈ [n] | xj 6= 0} for x = (x1, . . . , xn) ∈ Fn
q . Now, dP(x, y) =

wP(x − y) is a metric, called P-metric. If P is an antichain, P-weight and
P-metric reduce respectively to Hamming weight and Hamming metric. The
notion of P-codes, namely subsets C ⊆ Fn

q equipped with wP, were introduced
in [4] by Brualdi et. al.

For each linear code C ⊆ Fn
q , the P-weight distribution of C is {AP, i(C)}n

i=0,
where

AP, i(C) = |{x ∈ C | wP(x) = i }|.

We will denote by Aut(Fn
q , wP) the group of all linear automorphisms τ : Fn

q →
Fn

q satisfying wP(τx) = wP(x) for all x ∈ Fn
q . Let P0 = n11 ⊕ · · · ⊕ nt1 be

the poset (P0 is called a weak order poset) given as the ordinal sum of the
antichains ni1 on the set {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni−1 + ni} for
i = 1, . . . , t, i.e., the underlying set is [n] (n = n1 + · · · + nt) and the order
relation is given by:

i < j ⇔ i ∈ nl1, j ∈ nm1 for some l < m.
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Then we have the following fundamental result.

Theorem A. The following are equivalent.

(1) P is a weak order poset on [n].
(2) (Fn

q , {Ri}
n
i=0), with (x, y) ∈ Ri ⇔ dP (x, y) = i (0 ≤ i ≤ n) is a

symmetric translation association scheme.

(3) The P-weight distribution {AP, i(C)}n
i=0 of C uniquely determines P̆-

weight distribution {A
P̆, i

(C⊥)} of C⊥ for any linear code C ⊆ Fn
q .

(4) The group Aut(Fn
q , wP) acts transitively on each P-sphere SP(r) = {x ∈

Fn
q |wP(x) = r} for 0 ≤ r ≤ n.

(1)⇔(2) is shown in [8]. (1)⇒(3) is proved in [5] and [7], and (3)⇒(1) in
[7]. Finally, (1) ⇒ (4) is verified in [5] and (4)⇒(1) in [6]. Here we remark
that the proofs for (1)⇒(3) were found in the form of Macwilliams-type identi-
ties by applying the discrete Poisson summation formula to suitable P-weight
enumerators (cf. [5-7]).

Let us now pay our attention to the equivalence (1)⇔(2) in Theorem A.
We will denote the association scheme (Fn

q , {Ri}
n
i=0), with (x, y) ∈ Ri ⇔

dP0
(x, y) = i (P0 = n11⊕ n21 ⊕ · · · ⊕ nt1), by H(n1, . . . , nt; q), which is what

we call a weak Hamming scheme. Note that this becomes the usual Hamming
scheme when t = 1. Recall the following theorem of Delsarte [3], which is
usually called generalized MacWilliams identity.

Theorem B. Let Y be an additive code of the translation association scheme

X = (X, {Ri}
n
i=0). Then

(aj(Y
◦))n

j=0 =
1

|Y |
(ai(Y ))n

i=0(qij).

Here Y is just a subgroup of X, Y ◦ is the additive code of the dual scheme

X
∗ = (X∗, {R∗

i }
n
i=0) of X, given by

Y ◦ = {χ ∈ X∗ | χ(x) = 1 for all x ∈ Y },

ai(Y ) = |{y ∈ Y | (0, y) ∈ Ri }|,

ai(Y
◦) = |{χ ∈ Y ◦| (1, χ) ∈ R∗

i }|,

and (qij) is the Q-matrix of the scheme X.

An immediate consequence of Theorem B is the classical MacWilliams iden-
tity which can be expressed in weight-enumerator-free form as: for any linear
code C ⊆ Fn

q ,

(aj(C
⊥))n

j=0 =
1

|C|
(ai(C))n

i=0(pj(i)),

where pj(x) = pj(x;n, q) is the Krawtchouk polynomial defined by

pj(x) =

j
∑

l=0

(−1)l(q − 1)j−l

(
x

l

)(
n− x

j − l

)

(0 ≤ j ≤ n).
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Likewise, we would have yet another way of obtaining “MacWilliams-type iden-
tity” if we could find the Q-matrix for the scheme H(n1, . . . , nt; q), which is an
example of weak metric schemes, i.e., a finite wreath product of metric schemes
(cf. [1], [9]).

Indeed, we observe that, for i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = 1, i0 = 0,

dP0
(x, y) = n1 + · · · + ni−1 + i0 ⇔ xi+1 = yi+1, . . . , xt = yt, dH(xi, yi) = i0,

where dH is the Hamming metric. So identifying Fn
q with Fn1

q × · · · × Fnt
q

by writing the elements x ∈ F
n
q as blocks of coordinates x = (x1, . . . , xt) ∈

Fn1
q × · · · × Fnt

q , we see that H(n1, . . . , nt; q) = H(n1, q) ≀ · · · ≀H(nt, q) is noth-
ing but the wreath product of the Hamming schemes H(n1, q), . . . , H(nt, q),
which are metric schemes as is well-known. This motivates our study of weak
metric and weak cometric schemes. In particular, this will contribute to better
understanding of the important weak Hamming scheme H(n1, . . . , nt; q) (cf.
Theorem A above).

This paper is organized as follows. In Section 2, we will fix some notations
that will be used throughout this paper. In Section 3, the notion of weak
metric schemes is introduced as a finite wreath product of metric schemes.
Several equivalent conditions for being weak metric schemes are presented in
Theorem 2. These include the conditions on the shape of the “first inter-
section matrices for each level”, some modified polynomial relations on the
adjacency matrices for each level and some modified polynomial relations on
the p-numbers for each level. In Section 4, for schemes given as a finite wreath
product of (not necessarily metric) symmetric association schemes, some of
their parameters are determined. But, for Proposition 9(b), Lemma 10 and
Theorem 11, we assume that the schemes are weak metric schemes. Note that,
for weak metric schemes, Theorem 7(a) completely determines the first inter-
section matrices for each level, whereas Theorem 2 (b) gives only information
about the shapes of those ones. Theorem 11 is an analogue of [2, Theorem 1.3,
p. 197 ]. However, proving that requires considerably more work. In Section 5,
the notion of weak cometric schemes, which is dual to weak metric schemes,
is introduced and some equivalent conditions for being cometric schemes are
presented. Finally, in Section 6, we will give an example illustrating modified
polynomial relations in the case of a weak Hamming scheme.

2. Preliminaries and notations

Let n1, . . . , nt be positive integers with n = n1 + · · · + nt. For each i =

1, 2, . . . , t, let X
(i) = (Xi, {R

(i)
j }ni

j=0) be a symmetric association scheme. Here

we will always assume that the relations of X
(i) are ordered as R

(i)
0 , R

(i)
1 , . . .,

R
(i)
ni . Then X = X

(1) ≀ · · · ≀ X(t) = (X = X1 × · · · ×Xt, {Rj}
n
j=0) is the wreath

product of X
(1),X(2), . . . ,X(t), so that, for (x1, . . . , xt), (y1, . . . , yt) ∈ X ,

(x, y) ∈ Rni−1+i0 ⇔ xi+1 = yi+1, . . . , xt = yt and (xi, yi) ∈ R
(i)
i0
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for i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = 1, i0 = 0 (cf. [1], [9]). Here we will always
assume that the relations of X are ordered as R0, R1, . . . , Rn.

For each i = 1, . . . , t, let Γi = (Xi, R
(i)
1 ) be the graph with the distance

function ∂i. Then, for x = (x1, . . . , xt), y = (y1, . . . , yt) ∈ X , we define

d(x, y) =

{
0, if x = y,
ni−1 + ∂i(xi, yi), if xi 6= yi and xi+1 = yi+1, . . . , xt = yt,

(1)

where ni−1 = n1 + · · ·+ ni−1. Then d is a distance function. For this, we only

need to check d(x, y) ≤ d(x, z) + d(z, y) for x 6= y. Assume xi 6= yi, xi+1 =
yi+1, . . . , xt = yt. Then xi 6= zi or zi 6= yi, so that

d(x, z) + d(z, y) ≥ ni−1 + ∂i(xi, zi) + ∂i(zi, yi)

≥ ni−1 + ∂i(xi, yi)

= d(x, y).

Remark 1. (x, y) ∈ Rni−1+1 ⇔ d(x, y) = ni−1 + 1 (i = 1, . . . , t).

For elementary facts about association schemes, one is referred to [2] and
[3]. Throughout this paper, the following notations will be used.

• n1, . . . , nt positive integers with n1 + · · · + nt = n, n1 + · · · + ni = ni

(1 ≤ i ≤ t), n0 = 0, nt + · · · + ni = ni (1 ≤ i ≤ t), nt+1 = 0.

• X
(i) = (Xi, {R

(i)
j }ni

j=0) a symmetric association scheme with a fixed

ordering R
(i)
0 , R

(i)
1 , . . . , R

(i)
ni of relations (i = 1, . . . , t).

• Some of the parameters of X
(i) used are: valencies v

(i)
0 = 1, v

(i)
1 , . . .,

v
(i)
ni , multiplicities m

(i)
0 = 1, m

(i)
1 , . . ., m

(i)
ni , intersection numbers p

(i)k
jl ,

Krein parameters q
(i)k
jl , the adjacency matrices A

(i)
0 = I, A

(i)
1 , . . . , A

(i)
ni ,

the irreducible idempotents E
(i)
0 = |Xi|

−1J, E
(i)
1 , . . . , E

(i)
ni , the first

intersection matrix L
(i)
1 = (p

(i)k
1l )0≤k, l≤ni

, the first dual intersection

matrix M
(i)
1 = (q

(i)k
1l )0≤k, l≤ni

.

• X = (X = X1×· · ·×Xt, {Rj}
n
j=0) the wreath product X = X

(1)≀· · ·≀X(t)

of X
(1), . . . ,X(t), with a fixed ordering R0, R1, . . . , Rn of relations, so

that (x, y) ∈ Rni−1+i0 ⇔ xi+1 = yi+1, . . . , xt = yt and (xi, yi) ∈ R
(i)
i0

for i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = 1, i0 = 0.
• Some of the parameters of X used are: p-numbers pjl, q-numbers
qjl, intersection numbers pk

jl, Krein parameters qk
jl, valencies v0 =

1, v1, . . . , vn, multiplicities m0 = 1,m1, . . . ,mn, the adjacency matri-
ces A0, A1, . . . , An, the irreducible idempotents E0, E1, . . . , En, inter-
section matrices Lj = (pk

jl)0≤k, l≤n, dual intersection matrices Mj =

(qk
jl)0≤k, l≤n.

• Further notations for the parameters of X are:

θ
(i)
j = pj, ni−1+1, v

(i) = vni−1+1 (v(i) = θ
(i)
0 ),

ω
(i)
j = qj, ni+1+1, m

(i) = mni+1+1 (m(i) = ω
(i)
0 ),
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L(i) = (pk
ni−1+1, l)0≤k, l≤n the “first intersection matrix of level i”,

M (i) = (qk
ni+1+1, l)0≤k, l≤n the “first dual intersection matrix of level

i”,
[L(i)] = (pk

ni−1+1, l)ni−1≤k, l≤ni
a submatrix of L(i),

[M (i)] = (qk
ni+1+1, l)ni+1≤k, l≤ni

a submatrix of M (i).

• Γi = (Xi, R
(i)
1 ) the graph with distance function ∂i, d the function on

X defined by (1).

3. Weak metric schemes

Let X = (X = X1 × · · · ×Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X(t) be the symmetric
association scheme which is given as the wreath product of the symmetric as-

sociation schemes X
(i) = (Xi, {R

(i)
j }ni

j=0) (cf. Section 2). Then it will be called
a weak metric scheme if X satisfies further the following equivalent conditions.

Theorem 2. The following are equivalent.

(a) Γi = (Xi, R
(i)
1 ) is distance-regular for i = 1, . . . , t, and

(x, y) ∈ Rj ⇔ d(x, y) = j for j = 0, . . . , n.(2)

(b) For i = 1, . . . , t, we have the following:
(i) The submatrix [L(i)] = (pk

ni−1+1, l)ni−1≤k, l≤ni
of

L(i) = (pk
ni−1+1, l)0≤k, l≤n

is a tridiagonal matrix with nonzero off-diagonal entries.

Moreover, L(i) has the following entries:
(ii) (pk

ni−1+1, l)ni+1≤k, l≤n = v(i)I,

(iii) pk
ni−1+1, ni−1+1 = v(i) for 0 ≤ k ≤ ni−1,

(iv) p
ni−1+1

ni−1+1, l = vl for 0 ≤ l ≤ ni−1,

(v) All the other entries not appearing in (i)-(iv) are zeros.

(c) There are polynomials with real coefficients ψ
(1)
0 (x) of degree 0, ψ

(i)
k (x)

of degree k for i = 1, . . . , t, 1 ≤ k ≤ ni, with ψ
(i)
k (0) = 0 (2 ≤ i ≤ t),

and real numbers α
(1)
0 = · · · = α

(1)
n1

= 0 ,α
(2)
1 , . . . , α

(2)
n2

,. . ., α
(t)
1 , . . . , α

(t)
nt

such that

Ani−1+i0 = ψ
(i)
i0

(Ani−1+1) + α
(i)
i0

(A0 + · · · +Ani−1
)(3)

for i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = 1, i0 = 0.
(d) p-numbers satisfy

pj, ni−1+i0 = ψ
(i)
i0

(θ
(i)
j ) + α

(i)
i0

(pj0 + · · · + pj, ni−1
) (0 ≤ j ≤ n),

where ψ
(i)
i0

’s and α
(i)
i0

’s are the same as in (c), and θ
(i)
j = pj, ni−1+1.

(e) X
(i) = (Xi, {R

(i)
j }ni

j=0) is a metric scheme for i = 1, . . . , t.
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Proof. We first note the following: for i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = 1, i0 = 0,

Ani−1+i0Al = vlAni−1+i0 for 0 ≤ l ≤ ni−1.(4)

For this, we need to see: for 1 ≤ j < i, 1 ≤ k ≤ nj, or j = 1, k = 0,

Ani−1+i0Anj−1+k = vnj−1+kAni−1+i0 .

Let (x, y) ∈ Rm. If (x, z) ∈ Rni−1+i0 , (z, y) ∈ Rnj−1+k for some z ∈ X ,

then (x, y) ∈ Rni−1+i0 , and hence m = ni−1 + i0. On the other hand, if

(x, y) ∈ Rni−1+i0 , then

{z ∈ X | (x, z) ∈ Rni−1+i0 , (z, y) ∈ Rnj−1+k}

= {z ∈ X | (z, y) ∈ Rnj−1+k}.

This shows (4).
(a) ⇒ (b) (i) Let k = ni−1 +k0, l = ni−1 + l0, with 0 ≤ k0, l0 ≤ ni. Suppose

pk
ni−1+1, l 6= 0. Then d(x, y) = k, d(x, z) = ni−1+1, d(z, y) = l for some x, y, z.

Then ∂i(xi, yi) = k0, ∂i(xi, zi) = 1, ∂i(zi, yi) = l0. So |k0 − l0| ≤ 1, and hence
|k − l| ≤ 1. Thus pk

ni−1+1, l = 0, if |k − l| ≥ 2, with ni−1 ≤ k, l ≤ ni. Also,

pk
ni−1+1, l 6= 0, if |k−l| = 1. For any xi, yi ∈ Xi, with ∂i(xi, yi) = k0 (≥ 1), there

is a path xi = z
(i)
0 , z

(i)
1 , . . . , z

(i)
k0

= yi. Then ∂i(xi, z
(i)
1 ) = 1, ∂i(z

(i)
1 , yi) = k0−1.

Choose any points xj ∈ Xj for all j 6= i, and set

x = (x1, . . . , xi−1, xi, xi+1, . . . , xt),

y = (x1, . . . , xi−1, yi, xi+1, . . . , xt),

z = (x1, . . . , xi−1, z
(i)
1 , xi+1, . . . , xt).

Then d(x, y) = ni−1 + k0, d(x, z) = ni−1 + 1, d(z, y) = ni−1 + k0 − 1. So

pk
ni−1+1, k−1 6= 0 for ni−1+1 ≤ k ≤ ni. Similarly, one shows that pk

ni−1+1, k+1 6=

0 for ni−1 ≤ k ≤ ni − 1.

(ii) Let ni + 1 ≤ l ≤ n. For any x, y with d(x, y) = l,

pl
ni−1+1, l = |{z| d(x, z) = ni−1 + 1, d(z, y) = l}|

= |{z| d(x, z) = ni−1 + 1}|

= v(i).

Indeed, if l = nj + l0 (1 ≤ l0 ≤ nj+1) for some j with i ≤ j ≤ t − 1, then,

for z with d(x, z) = ni−1 + 1, xj+1 = zj+1, ∂j+1(xj+1, yj+1) = l0, zj+2 =

yj+2, . . . , zt = yt, and hence d(z, y) = l is automatic. In the same manner, one
shows pk

ni−1+1, l = 0 for all k, l with ni + 1 ≤ k, l ≤ n, k 6= l.

(iii), (iv) These can be shown similarly to the proof of (ii).
(v) As pk

ni−1+1, l = 0 ⇔ pl
ni−1+1, k = 0, we only need to see:

pk
ni−1+1, l = 0 for 0 ≤ k ≤ n (k 6= ni−1 + 1), 0 ≤ l ≤ ni−1,(5)
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and

pk
ni−1+1, l = 0 for ni−1 + 1 ≤ k ≤ ni, ni + 1 ≤ l ≤ n.

Both of these are easy to see.
(b) ⇒ (a) First, we show (2) by induction on j. It is clearly true for j =

0. Assume that k ≥ 1 and the assertion holds for all j ≤ k − 1. Let k =
ni−1 + k0 for some i, k0 with 1 ≤ i ≤ t, 1 ≤ k0 ≤ ni. Let (x, y) ∈ Rk. As

pk
ni−1+1, k−1 6= 0, (x, z) ∈ Rni−1+1, (z, y) ∈ Rk−1 for some z. By induction

hypothesis d(z, y) = k − 1, and d(x, z) = ni−1 + 1, by Remark 1. Thus

∂i(zi, yi) = k0 − 1, zi+1 = yi+1, . . . , zt = yt;

∂i(xi, zi) = 1, xi+1 = zi+1, . . . , xt = zt .

So ∂i(xi, yi) ≤ k0, xi+1 = yi+1, . . ., xt = yt, and hence d(x, y) ≤ k. Also,
we have d(x, y) ≥ k, since otherwise we would have (x, y) ∈ Rj for some
j ≤ k − 1, by induction hypothesis. Conversely, assume that d(x, y) = k.
Here, in view of Remark 1, we may let d(x, y) = k = ni−1 + k0 for some i

and k0 with 2 ≤ k0 ≤ ni. Then we must have (x, y) ∈ Rj for some j ≥ k.
We now exclude the possibility that (x, y) ∈ Rj for some j ≥ k + 1. Assume,
on the contrary, that (x, y) ∈ Rj for some j ≥ k + 1. Then there is a path

xi = z
(i)
0 , z

(i)
1 , . . . , z

(i)
k0−1, z

(i)
k0

= yi, and xi+1 = yi+1, . . . , xt = yt. Put

z = (x1, . . . , xi−1, z
(i)
k0−1, xi+1, . . . , xt).

Then d(y, z) = ni−1+1 ⇒ (y, z) ∈ Rni−1+1, by Remark 1, and d(z, x) = k−1 ⇒

(z, x) ∈ Rk−1. So pj
ni−1+1, k−1 6= 0. As j ≥ k+ 1 ≥ ni−1 + 3, pj

ni−1+1, k−1 = 0,

by our assumption on the matrix L(i). This is a contradiction.
Next, we show that each Γi is distance-regular. Let xi, yi, x

′
i, y

′
i ∈ Xi, with

∂i(xi, yi) = ∂i(x
′
i, y

′
i) = k0 (0 ≤ k0 ≤ ni). Then we must show:

(6)
|{ui ∈ Xi | ∂i(xi, ui) = l0, ∂i(ui, yi) = m0}|

= | {ui ∈ Xi | ∂i(x
′
i, ui) = l0, ∂i(ui, y

′
i) = m0}|

for all l0,m0 with 0 ≤ l0,m0 ≤ ni. This is clearly true for l0 = 0 or m0 = 0.
Thus we assume l0,m0 ≥ 1. Choose zj ∈ Xj for all j 6= i, and set

x̃ = (z1, . . . , zi−1, xi, zi+1, . . . , zt), ỹ = (z1, . . . , zi−1, yi, zi+1, . . . , zt),

x̃′ = (z1, . . . , zi−1, x
′
i, zi+1, . . . , zt), ỹ

′ = (z1, . . . , zi−1, y
′
i, zi+1, . . . , zt).

Then d(x̃, ỹ) = d(x̃′, ỹ′). By (2), we have:

|{u ∈ X | d(x̃, u) = ni−1 + l0, d(u, ỹ) = ni−1 +m0}|

= |{u ∈ X | d(x̃′, u) = ni−1 + l0, d(u, ỹ
′) = ni−1 +m0}|,

which implies

|X1| · · · |Xi−1| · | {ui ∈ Xi | ∂i(xi, ui) = l0, ∂i(ui, yi) = m0}|
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= |X1| · · · |Xi−1| · | {ui ∈ Xi | ∂i(x
′
i, ui) = l0, ∂i(ui, y

′
i) = m0}|.

So we get (6).
(b) ⇒ (c) Here we denote the entries of the submatrix [L(i)] of L(i) just as

in (12) for i = 1, . . . , t. Define the polynomials ψ
(1)
i (x) of degree i (0 ≤ i ≤ n1)

recursively by:

ψ
(1)
0 (x) = 1, ψ

(1)
1 (x) = x,

xψ
(1)
i (x) = b

(1)
i−1 ψ

(1)
i−1(x) + a

(1)
i ψ

(1)
i (x) + c

(1)
i+1 ψ

(1)
i+1(x) (i ≥ 1).

Also, define

α
(1)
0 = α

(1)
1 = · · · = α(1)

n1
= 0.

Then

Ai0 = ψ
(1)
i0

(A1) + α
(1)
i0
A0 for 0 ≤ i0 ≤ n1.

Let i (2 ≤ i ≤ t) be fixed. Define

ψ
(i)
1 (x) = x, α

(i)
1 = 0.

Then

Ani−1+1 = ψ
(i)
1 (Ani−1+1) + α

(i)
1 (A0 + · · · +Ani−1

).

Also, if we define

ψ
(i)
2 (x) = c

(i)−1

2 (x2 − a
(i)
1 x), α

(i)
2 = −c

(i)−1

2 v(i),

then

Ani−1+2 = ψ
(i)
2 (Ani−1+1) + α

(i)
2 (A0 + · · · +Ani−1

).

Assume now that ψ
(i)
1 , . . . , ψ

(i)
i0
, α

(i)
1 , . . . , α

(i)
i0

(2 ≤ i0 < ni) are defined so
that

Ani−1+j0 = ψ
(i)
j0

(Ani−1+1) + α
(i)
j0

(A0 + · · · +Ani−1
), ψ

(i)
j0

(0) = 0

holds for all 1 ≤ j0 ≤ i0. Define the polynomial ψ
(i)
i0+1(x) of degree i0 + 1 by:

ψ
(i)
i0+1(x) = c

(i)−1

i0+1 {xψ
(i)
i0

(x) + α
(i)
i0

(v0 + · · · + vni−1
)x

− b
(i)
i0−1ψ

(i)
i0−1(x) − a

(i)
i0
ψ

(i)
i0

(x)},

and a constant α
(i)
i0+1 by:

α
(i)
i0+1 = −c

(i)−1

i0+1 (b
(i)
i0−1α

(i)
i0−1 + a

(i)
i0
α

(i)
i0

).

Then

Ani−1+i0+1 = ψ
(i)
i0+1(Ani−1+1) + α

(i)
i0+1(A0 + · · · +Ani−1

).

Observe here that ψ
(i)
i0+1(0) = 0.
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(c) ⇒ (b) Here we must show the following: for i = 1, . . . , t,

Ani−1+1 Al = vl Ani−1+1 (0 ≤ l ≤ ni−1),(7)

Ani−1+1 Ani−1+1 = v(i)(A0 + · · · +Ani−1
) + a

(i)
1 Ani−1+1 + c

(i)
2 Ani−1+2(8)

with c
(i)
2 6= 0,

(9)
Ani−1+1 Ani−1+i0 = b

(i)
i0−1Ani−1+i0−1 + a

(i)
i0
Ani−1+i0

+ c
(i)
i0+1Ani−1+i0+1 (2 ≤ i0 ≤ ni)

with b
(i)
i0−1 6= 0 (2 ≤ i0 ≤ ni), c

(i)
i0+1 6= 0 (2 ≤ i0 ≤ ni − 1), c

(i)
ni+1 = 0,

Ani−1+1 Al = v(i)Al (ni + 1 ≤ l ≤ n).(10)

By (4), (7), and (10) are true. Next, we show (8) and (9). For i = 1, we

only need to show (9) for 1 ≤ l ≤ n1. By our assumption Ai0 = ψ
(1)
i0

(A1) for

0 ≤ i0 ≤ n1. Since xψ
(1)
l (x) is a linear combination of ψ

(1)
l+1(x), ψ

(1)
l (x), . . .,

ψ
(1)
0 (x), A1Al is a linear combination of Al+1, Al, . . ., A0. Clearly, the coeffi-

cient of Al+1 6= 0. As A1Al =
∑n

k=0 p
k
1lAk, pk

1l = 0 for k ≥ l + 2 and pl+1
1l 6= 0.

Since pk
1l = 0 ⇔ pl

1k = 0, pk
1l = 0 if |k − l| ≥ 2, and pk

1l 6= 0 if |k − l| = 1. Let
i ≥ 2. First, we show (9). By (3) and (4), for 1 ≤ i0 ≤ ni we have:

Ani−1+i0Ani−1+1 = ψ
(i)
i0

(Ani−1+1)Ani−1+1 + α
(i)
i0

(v0 + · · · + vni−1
)Ani−1+1.

(11)

As ψ
(i)
k (0) = 0 (1 ≤ k ≤ ni),

ψ
(i)
i0

(x)x + α
(i)
i0

(v0 + · · · + vni−1
)x =

i0+1∑

k0=1

βk0
ψ

(i)
k0

(x)

for some βk0
with βi0+1 6= 0. Thus, for 2 ≤ i0 ≤ ni,

Ani−1+i0 Ani−1+1 =

i0+1∑

k0=1

βk0
Ani−1+k0

−

i0+1∑

k0=1

βk0
α

(i)
k0

(A0 + · · · +Ani−1
),

by (3) and (11). Just as in the above argument, this implies that p
ni−1+k0

ni−1+1,ni−1+l0

= 0 for |k0 − l0| ≥ 2, and p
ni−1+k0

ni−1+1,ni−1+l0
6= 0 for |k0 − l0| = 1. Next, we show

(8). By (3) with i0 = 2,

Ani−1+2 = aA2
ni−1+1 + bAni−1+1 + α

(i)
2 (A0 + · · · +Ani−1

)

for some a, b with a 6= 0. So

Ani−1+1 Ani−1+1 = w(A0 + · · · + Ani−1
) + a

(i)
1 Ani−1+1 + c

(i)
2 Ani−1+2
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with c
(i)
2 6= 0, where we put

w = −a−1α
(i)
2 , a

(i)
1 = −a−1b, c

(i)
2 = a−1.

It remains to see that w = v(i). For 0 ≤ k ≤ ni−1, let (x, y) ∈ Rk. Then

xi = yi, . . . , xt = yt. Thus pk
ni−1+1,ni−1+1 = v(i), and hence w = v(i).

(c) ⇔ (d) This is straightforward.
(a) ⇔ (e) Note that (2) is equivalent to: for i = 1, . . . , t,

(xi, yi) ∈ R
(i)
j ⇔ ∂i(xi, yi) = j (0 ≤ j ≤ ni) (cf. [2, Prop. 1.1, p. 189]). �

Remark 3. (1) When X is a weak metric scheme, for i = 1, . . . , t the submatrix
[L(i)] of L(i) will be denoted by:

[L(i)] =











a
(i)
0 b

(i)
0

c
(i)
1 a

(i)
1 b

(i)
1

. . .
. . .

. . .

c
(i)
ni−1 a

(i)
ni−1 b

(i)
ni−1

c
(i)
ni a

(i)
ni











.(12)

Observe here that a
(i)
0 = 0, b

(i)
0 = v(i), c

(i)
1 = vni−1

.

(2) Put

ψ(1)(x) = ψ
(1)
0 (x) + · · · + ψ(1)

n1
(x), ψ(i)(x) = ψ

(i)
1 (x) + · · · + ψ(i)

ni
(x) (2 ≤ i ≤ t).

Then ψ(i)(x) is a polynomial of degree ni for 1 ≤ i ≤ t. Using (3), one can
show by induction on i that, for i = 2, . . . , t,

A0 + · · · +Ani−1
=

i−1∑

k=1

c
(i)
k ψ(k)(Ank−1+1),(13)

where c
(i)
k =

∏i−1
l=k+1(1+α

(l)
1 + · · ·+α

(l)
nl ) with the understanding that c

(i)
i−1 = 1.

(3) For i = 2, . . . , t, 1 ≤ i0 ≤ ni,

Ani−1+i0 = ψ
(i)
i0

(Ani−1+1) + α
(i)
i0
ξ
(i)
ni−1+1(Ani−2+1),

where ξ
(i)
ni−1+1(x) is a polynomial with real coefficients of degree ni−1 + 1.

Indeed, from (3) and (13), we have

Ani−1+i0 = ψ
(i)
i0

(Ani−1+1) + α
(i)
i0

i−1∑

k=1

c
(i)
k ψ(k)(Ank−1+1).(14)

Multiplying both sides of (14) by Ani−2+1 and using (4), we get:

v(i−1)Ani−1+i0

= v(i−1)ψ
(i)
i0

(Ani−1+1)
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+ α
(i)
i0

i−2∑

k=1

c
(i)
k ψ(k)(Ank−1+1)Ani−2+1 + α

(i)
i0
ψ(i−1)(Ani−2+1)Ani−2+1

= v(i−1)ψ
(i)
i0

(Ani−1+1)

+ α
(i)
i0
{

i−2∑

k=1

c
(i)
k ψ(k)(v(k))Ani−2+1 + ψ(i−1)(Ani−2+1)Ani−2+1}.

This implies

Ani−1+i0 = ψ
(i)
i0

(Ani−1+1) + α
(i)
i0
ξ
(i)
ni−1+1(Ani−2+1),

where we put

ξ
(i)
ni−1+1(x) = v(i−1)−1

{
i−2∑

k=1

c
(i)
k ψ(k)(v(k))x+ ψ(i−1)(x)x

}

.

Proposition 4. Let X = (X = X1 × · · · × Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X
(t)

be a weak metric scheme with X
(i) = (Xi, {R

(i)
j }ni

j=0). Let the entries of the

submatrix [L(i)] of L(i) be as in (12). Then

(a)

(15) a
(1)
l + b

(1)
l + c

(1)
l = v(1) for i ≥ 2,

(16) a
(i)
l + b

(i)
l + c

(i)
l =

{
v(i), 0 ≤ l ≤ ni and l 6= 1,

v(i) − (v0 + v1 + · · · + vni−1−1), l = 1.

Here c
(i)
0 = 0, b

(i)
ni = 0 for i = 1, . . . , t.

(b) vni−1+i0 = v(i)b
(i)
1 b

(i)
2 · · · b

(i)
i0−1/c

(i)
2 c

(i)
3 · · · c

(i)
i0

for i = 1, . . . , t, 2 ≤ i0 ≤ ni.

(c) v(i) = b
(i)
0 ≥ b

(i)
1 ≥ · · · ≥ b

(i)
ni−1 for i = 1, . . . , t.

(d) vni−1
= c

(i)
1 ≤ c

(i)
2 ≤ · · · ≤ c

(i)
ni for i = 1, . . . , t.

Proof. (a) The result follows from
∑n

j=0 p
k
ni−1+1,j = v(i), Theorem 2(b)(i), (iv),

(v), and (12).

(b) Since pk
ijvk = pj

ikvj , vni−1+i0b
(i)
i0

= vni−1+i0+1c
(i)
i0+1. So

v(i) =
c
(i)
2 vni−1+2

b
(i)
1

=
c
(i)
2 c

(i)
3 vni−1+3

b
(i)
1 b

(i)
2

= · · · =
c
(i)
2 · · · c

(i)
i0
vni−1+i0

b
(i)
1 b

(i)
2 · · · b

(i)
i0−1

.

(c) Let x, y ∈ X with d(x, y) = ni−1 + i0 (1 ≤ i0 ≤ ni − 1). Let w be

an element of X such that d(x,w) = ni−1 + 1, d(w, y) = ni−1 + i0 + 1. As

∂i(xi, yi) = i0, we can choose zi ∈ Xi, with ∂i(xi, zi) = i0 − 1, ∂i(zi, yi) = 1.
Then ∂i(zi, wi) ≤ i0. Also, ∂i(zi, wi) ≥ i0, since otherwise we would have
∂i(wi, yi) ≤ i0. We put z = (x1, . . . , xi−2, zi−1, zi, xi+1, . . . , xt), where zi−1 ∈
Xi−1 is an element with ∂i−1(xi−1, zi−1) = ni−1. Note here that such an
zi−1 can be chosen, since, if necessary, after replacing (i − 1)th component
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xi−1 of x we may assume {ai−1 ∈ Xi−1 | ∂i−1(xi−1, ai−1) = ni−1} 6= ∅.
Then d(x, z) = ni−1 + i0 − 1. Observe that this holds even for i0 = 1. Also,

d(w, z) = ni−1 + i0. This shows that b
(i)
i0

≤ b
(i)
i0−1 for 1 ≤ i0 ≤ ni − 1.

(d) Let x, z ∈ X , with d(x, z) = ni−1 + i0 +1 (1 ≤ i0 ≤ ni − 1). Choose yi ∈

Xi with ∂i(xi, yi) = i0, ∂i(yi, zi) = 1. Put y = (x1, . . . , xi−1, yi, xi+1, . . . , xt).
Then d(x, y) = ni−1+i0. Let w be an element ofX such that d(x,w) = ni−1+1,

d(w, y) = ni−1 + i0 − 1. Just as in the proof of (c), we have ∂i(wi, zi) = i0, and

hence d(w, z) = ni−1 + i0. This shows c
(i)
i0

≤ c
(i)
i0+1 for 1 ≤ i0 ≤ ni − 1. �

4. Parameters of weak metric schemes

Let X = (X = X1 × · · · × Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X
(t) be a symmetric

association scheme which is given as the wreath product of the symmetric as-

sociation schemes X
(i) = (Xi, {R

(i)
j }ni

j=0). Then we will determine some of the
parameters of X, such as valencies, multiplicities, the adjacency matrices, the
irreducible idempotents, P -matrix and Q-matrix. Further, we will determine
the first intersection matrix for each level and the first dual intersection ma-
trix for each level. Also, we will prove Theorem 11 which is an analogue of
Theorem 1.3 in [2, p. 197].

In below, all the matrices in the i-th factor of tensor products are of size |Xi|
for i = 1, . . . , t, and accordingly I and J will denote respectively the identity
and all-one matrices of various sizes.

Theorem 5. Let X = (X = X1 × · · · × Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X
(t) be

a symmetric association scheme which is given as the wreath product of the

symmetric association schemes X
(i) = (Xi, {R

(i)
j }ni

j=0). Then we have the

following.

(a) |X1| · · · |Xi−1| v
(i)
i0

= vni−1+i0 for 1 ≤ i ≤ t, 1 ≤ i0 ≤ ni, or i = 1,

i0 = 0.
(b) λi :=

∑ni

j=0 vj = |X1| · · · |Xi| for i = 1, . . . , t.

(c) |Xt| · · · |Xi+1| m
(i)
i0

= mni+1+i0 for 1 ≤ i ≤ t, 1 ≤ i0 ≤ ni, or i = t,
i0 = 0.

(d) µi :=
∑ni

j=0mj = |Xt| · · · |Xi| for i = 1, . . . , t.

(e)

(17)

A0 = A
(1)
0 ⊗ I ⊗ · · · ⊗ I = I, A1 = A

(1)
1 ⊗ I ⊗ · · · ⊗ I, . . . ,

An1
= A(1)

n1
⊗ I ⊗ · · · ⊗ I, An1+1 = J ⊗A

(2)
1 ⊗ I ⊗ · · · ⊗ I, . . . ,

An1+n2
= J ⊗A(2)

n2
⊗ I ⊗ · · · ⊗ I, . . . ,

Ani−1+i0 = J ⊗ · · · ⊗ J ⊗A
(i)
i0

⊗ I ⊗ · · · ⊗ I (1 ≤ i0 ≤ ni), . . . ,

Ant−1+1 = J ⊗ · · · ⊗ J ⊗A
(t)
1 , . . . , An = J ⊗ · · · ⊗ J ⊗A(t)

nt
,

where in (17) there are (i− 1) factors of J .
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(f)

E0 = E
(1)
0 ⊗ · · · ⊗E

(t−1)
0 ⊗ E

(t)
0 = |X |−1J,

E1 = E
(1)
0 ⊗ · · · ⊗E

(t−1)
0 ⊗ E

(t)
1 ,

...

Ent
= E

(1)
0 ⊗ · · · ⊗E

(t−1)
0 ⊗ E(t)

nt
,

Ent+1 = E
(1)
0 ⊗ · · · ⊗E

(t−2)
0 ⊗ E

(t−1)
1 ⊗ I,

...

Ent+nt−1
= E

(1)
0 ⊗ · · · ⊗E

(t−2)
0 ⊗ E(t−1)

nt−1
⊗ I,

...

Eni+1+i0 = E
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
i0

⊗ I ⊗ · · · ⊗ I (1 ≤ i0 ≤ ni)

...

En2+1 = E
(1)
1 ⊗ I ⊗ · · · ⊗ I, . . . , En = E(1)

n1
⊗ I ⊗ · · · ⊗ I.

For i = 1, 2, . . . , t, let P (i) and Q(i) be respectively the P -matrix and the Q-

matrix of X
(i). For these, we put

P (i) =








1 v
(i)
1 · · · v

(i)
ni

1
... P̃ (i)

1







, Q(i) =








1 m
(i)
1 · · · m

(i)
ni

1
... Q̃(i)

1







.

(g) P =

































1 v1 · · · vn1
vn1+1 · · · vn2

· · · · · · vnt−2+1 · · · vnt−1
vnt−1+1 · · · vn

1 v1 vn1
vn1+1 vn2

· · · · · · vnt−2+1 vnt−1

...
...
...

...
...

...
... λt−1P̃

(t)

1 v1 vn1
vn1+1 vn2

· · · · · · vnt−2+1 vnt−1

1 v1 vn1
vn1+1 vn2

· · · · · ·
...

...
...

...
... λt−2P̃

(t−1) 0
1 v1 vn1

vn1+1 vn2
· · · · · ·

...
...
...

...
...

...
...

...
...

...
...

1 v1 vn1
· · · · · ·

...
...
... λ1P̃

(2) 0 0
1 v1 vn1

· · · · · ·
1 · · · · · ·
... λ0P̃

(1) 0 0 0
1 · · · · · ·

































.
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(h) Q =

































1 m1 · · · mnt
mnt+1 · · ·mnt−1

· · · · · · mn3+1 · · ·mn2
mn2+1 · · ·mn1

1 m1 mnt
mnt+1 mnt−1

· · · · · · mn3+1 mn2

...
...
...

...
...

...
... µ2Q̃

(1)

1 m1 mnt
mnt+1 mnt−1

· · · · · · mn3+1 mn2

1 m1 mnt
mnt+1 mnt−1

· · · · · ·
...

...
...

...
... µ3Q̃

(2) 0
1 m1 mnt

mnt+1 mnt−1
· · · · · ·

...
...
...

...
...

...
...

...
...

...
...

1 m1 mnt
· · · · · ·

...
...
... µtQ̃

(t−1) 0 0
1 m1 mnt

· · · · · ·
1 · · · · · ·
... µt+1Q̃

(t) 0 0 0
1 · · · · · ·

































.

Proof. (a) Let (x1, x2, . . . , xt) ∈ X . Then

vni−1+i0 =| {(y1, . . . , yi, xi+1, . . . , xt) ∈ X | (xi, yi) ∈ R
(i)
i0
}|

=|X1| · · · |Xi−1|v
(i)
i0
.

(b) Induction on i. For i = 1, λ1 =
∑n1

j=0 vj =
∑n1

j=0 v
(1)
j = |X1|, by (a).

Assume that it holds for i (i ≥ 1). Then, again by (a),

λi+1 = λi +

ni+1
∑

j=ni+1

vj

= |X1| · · · |Xi| + |X1| · · · |Xi|

ni+1∑

i0=1

v
(i+1)
i0

= |X1| · · · |Xi| + |X1| · · · |Xi|(|Xi+1| − 1)

= |X1| · · · |Xi+1|.

(e), (f) These can be shown directly. Or these will follow by generalizing
the results in Section 4 of [9] stated for the wreath product of two association
schemes. Observe, however, that in what will follow we reversed the order
of factors in tensor product expressions of adjacency matrices and irreducible
idempotents.

(c) From (f),

mni+1+i0 = trEni+1+i0

= trE
(1)
0 · · · trE

(i−1)
0 trE

(i)
i0

|Xi+1| · · · |Xt|

= |Xt| · · · |Xi+1| m
(i)
i0
.

(d) Reverse induction on i, starting from t.



WEAK METRIC AND WEAK COMETRIC SCHEMES 799

(g) For the wreath product of two association schemes, this is also stated in
Section 4 of [9]. The proof is left to the reader, as it can be shown just as in
(h) below.

(h)

Eni+1+i0 = E
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
i0

⊗ I ⊗ · · · ⊗ I

= |X1|
−1J ⊗ · · · ⊗ |Xi−1|

−1J ⊗ |Xi|
−1

ni∑

j=0

q
(i)
ji0
A

(i)
j ⊗ I ⊗ · · · ⊗ I

= |X |−1{µi+1

ni∑

j=1

q
(i)
ji0
J ⊗ · · · ⊗ J ⊗A

(i)
j ⊗ I ⊗ · · · ⊗ I

+mni+1+i0J ⊗ · · · ⊗ J ⊗ I ⊗ I ⊗ · · · ⊗ I}

= |X |−1{µi+1

ni∑

j=1

q
(i)
ji0
Ani−1+j +mni+1+i0(A0 +A1 + · · · +Ani−1

)},

where the last equality is obtained by replacing various J by the corresponding
sum of adjacency matrices for X

(j) for j = i− 1, i− 2, . . . , 1. �

Remark 6. From the expression of P in Theorem 5 (g), we have:

θ
(i)
0 , θ

(i)
1 , . . . , θ(i)n = θ

(i)
0 , θ

(i)
0 , . . . , θ

(i)
0

︸ ︷︷ ︸

ni+1+1

, θ
(i)
ni+1+1, . . . , θ

(i)
ni
, 0, . . . , 0
︸ ︷︷ ︸

ni−1

.

Theorem 7. Let X = (X = X1 × · · · × Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X
(t) be

a symmetric association scheme which is given as the wreath product of the

symmetric association schemes X
(i) = (Xi, {R

(i)
j }ni

j=0).

(a) The first intersection matrix L(i) = (p k
ni−1+1, l)0≤k,l≤n of level i is

L(i) =



















0

v(i)

...

v(i)

0

v0 v1 · · · vni−1

λi−1L̃
(i)
1

0 v(i)In−ni



















,

(18)

where the upper left diagonal block matrix in (18) is the zero matrix of size

ni−1 + 1 (with rows and columns indexed by 0, 1, . . . , ni−1), and L̃1
(i)

is the

submatrix (p
(i)k
1l )1≤k,l≤ni

of the first intersection matrix L
(i)
1 = (p

(i)k
1l )0≤k,l≤ni

of X
(i).
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In particular, the submatrix [L(i)] = (pk
ni−1+1,l)ni−1≤k,l≤ni

of L(i) is

[L(i)] =











0 v(i) 0 · · · 0
vni−1

0 λi−1L̃1
(i)

...

0











.(19)

(b) The first dual intersection matrix M (i) = (qk
ni+1+1,l)0≤k,l≤n of level i is

M (i) =



















0

m(i)

...

m(i)

0

m0 m1 · · ·mni+1

µi+1M̃
(i)
1

0 m(i)In−ni



















,

(20)

where the upper left diagonal block matrix in (20) is the zero matrix of size

ni+1 + 1 (with rows and columns indexed by 0, 1, . . . , ni+1), and M̃
(i)
1 is the

submatrix (q
(i)k
1l )1≤k,l≤ni

of the first intersection matrix M
(i)
1 = (q

(i)k
1l )0≤k,l≤ni

of X
(i).

In particular, the submatrix [M (i)] = (qk
ni+1+1,l)ni+1≤k,l≤ni

of M (i) is

[M (i)] =











0 m(i) 0 · · · 0
mni+1

0 µi+1M̃1
(i)

...

0











.(21)

Proof. Here we will give only a proof for (b). From Theorem 5(f),

Eni+1+1 ◦ Eni+1+l

= (E
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
1 ⊗ I ⊗ · · · ⊗ I)

◦ (E
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
l ⊗ I ⊗ · · · ⊗ I)

= (|X1| · · · |Xi−1|)
−1E

(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
1 ◦ E

(i)
l ⊗ I ⊗ · · · ⊗ I

= |X |−1{

ni∑

k=1

µi+1q
(i)k
1l E

(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
k ⊗ I ⊗ · · · ⊗ I

+m(i)δ1lE
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
0 ⊗ I ⊗ · · · ⊗ I}
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= |X |−1

{
ni∑

k=1

µi+1q
(i)k
1l Eni+1+k +m(i)δ1l(E0 + · · · + Eni+1

)

}

,

where the last equality is obtained by replacing various I by the corresponding
sum of irreducible idempotents for X

(j), for j = i+ 1, . . . , t.
Let j > i, 1 ≤ l ≤ nj , or let j = t, l = 0. Then

Eni+1+1 ◦ Enj+1+l

= (E
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
1 ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I)

◦ (E
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
0 ⊗ E

(i+1)
0 ⊗ · · · ⊗E

(j−1)
0 ⊗ E

(j)
l ⊗ I ⊗ · · · ⊗ I)

= |X1|
−1E

(1)
0 ⊗ · · · ⊗ |Xi−1|

−1E
(i−1)
0 ⊗ E

(i)
1 ◦ E

(i)
0 ⊗ |Xi+1|

−1I ⊗ · · ·

⊗ |Xj−1|
−1I ⊗ I ◦ E

(j)
l ⊗ I ⊗ · · · ⊗ I

= |X |−1mnj+1+lEni+1+1,

where we note that

E
(i)
1 ◦ E

(i)
0 = |Xi|

−1E
(i)
1 , I ◦ E

(j)
l = |Xj |

−1m
(j)
l I.

Similarly to the just above case, one shows, for j < i, that Eni+1+1 ◦

Enj+1+l = |X |−1m(i)Enj+1+l. �

Remark 8. λi−1L
(i)
1 equals [L(i)] except for the (2,1) entry, namely the (2,1)

entry of λi−1L
(i)
1 is λi−1 =

∑ni−1

j=0 vj , whereas that of [L(i)] is vni−1
(cf. (19)).

Also, µi+1M
(i)
1 equals [M (i)] except for the (2,1) entry, namely the (2,1) entry

of µi+1M
(i)
1 is µi+1 =

∑ni+1

j=0 mj , whereas that of [M (i)] is mni+1
(cf. (21)).

Proposition 9. Let X = (X = X1 × · · · × Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X(t) be

a symmetric association scheme which is given as the wreath product of the

symmetric association schemes X
(i) = (Xi, {R

(i)
j }ni

j=0). Then we have:

(a) θ
(i)
0 , . . . , θ

(i)
n are real numbers and eigenvalues of L(i) for i = 1, 2, . . . , t.

Further, |θ
(i)
j | ≤ v(i) for i = 1, 2, . . . , t, 0 ≤ j ≤ n.

If in addition X is a weak metric scheme, then we have:

(b)

(22)

ψ
(1)
0 (x) = 1, ψ

(1)
1 (x) = x,

c
(1)
i0
ψ

(1)
i0

(x) = (x− a
(1)
i0−1)ψ

(1)
i0−1(x) − b

(1)
i0−2ψ

(1)
i0−2(x) (2 ≤ i0 ≤ n1)

α
(1)
0 = α

(1)
1 = · · · = α(1)

n1
= 0 for 2 ≤ i ≤ t,

(23)

ψ
(i)
1 (x) = x, ψ

(i)
2 (x) = c

(i)−1
2 (x2 − a

(i)
1 x),

c
(i)
i0
ψ

(i)
i0

(x) = (x− a
(i)
i0−1)ψ

(i)
i0−1(x) − b

(i)
i0−2ψ

(i)
i0−2(x)

+ α
(i)
i0−1(v0 + · · · + vni−1

)x (3 ≤ i0 ≤ ni),
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(24)
α

(i)
1 = 0, α

(i)
2 = −c

(i)−1

2 v(i) = −c
(i)−1

2 b
(i)
0 ,

c
(i)
i0
α

(i)
i0

= −(b
(i)
i0−2α

(i)
i0−2 + a

(i)
i0−1α

(i)
i0−1) (3 ≤ i0 ≤ ni).

Proof. (a) The first statement follows from PL(i)P−1 = diag(θ
(i)
0 , . . . , θ

(i)
n ) and

the second one does from Perron-Frobenius’ theorem.
(b) This follows from the proof (b) ⇒ (c) of Theorem 2. �

Lemma 10. Let X = (X = X1 × · · ·×Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀X(t) be a weak

metric scheme. Then, for 2 ≤ i ≤ t,

(1 + α
(i)
2 + · · · + α(i)

ni
)λi−1 =

(−1)niθ
(i)
ni+1+1 · · · θ

(i)
ni

c
(i)
2 c

(i)
3 · · · c

(i)
ni

.(25)

Proof. From (24) and in view of Remark 8, with α
(i)
0 = 1 we have:













1

b̃
(i)
0 c̃

(i)
2

ã
(i)
2 c̃

(i)
3

b̃
(i)
2 ã

(i)
3 c̃

(i)
4

. . .
. . .

. . .

b̃
(i)
ni−2 ã

(i)
ni−1 c̃

(i)
ni


























α
(i)
0

α
(i)
2

α
(i)
3
...
...

α
(i)
ni














=













1
0
0
...
...
0













(26)

if the first intersection matrix L
(i)
1 of X

(i) is given by












ã
(i)
0 b̃

(i)
0

c̃
(i)
1 ã

(i)
1 b̃

(i)
1

c̃
(i)
2 ã

(i)
2 b̃

(i)
2

. . .
. . .

. . .

c̃
(i)
ni−1 ã

(i)
ni−1 b̃

(i)
ni−1

c̃
(i)
ni ã

(i)
ni













.

By Remark 8 and the shape of P (cf. Theorem 5(g)), (25) is equivalent to:

(1 + α
(i)
2 + · · · + α(i)

ni
) =

(−1)nip
(i)
11 · · · p

(i)
ni1

c̃
(i)
2 c̃

(i)
3 · · · c̃

(i)
ni

,(27)

with P (i) = (p
(i)
kl )0≤k, l≤ni

the P -matrix of X
(i).

It can be shown (cf. [2, Theorem 1.3, p. 197]) that, if we define

c̃
(i)
j Pj(x) = (x− ã

(i)
j−1)Pj−1(x) − b̃

(i)
j−2Pj−2(x) (2 ≤ j ≤ ni),

P0(x) = 1, P1(x) = x,

and

Pni+1(x) = (x− ã(i)
ni

)Pni
(x) − b̃

(i)
ni−1Pni−1(x),
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then

Pni+1(x) =
1

c̃
(i)
2 c̃

(i)
3 · · · c̃

(i)
ni

(x− p
(i)
01 )(x − p

(i)
11 ) · · · (x− p

(i)
ni1

)

= (x− p
(i)
01 )

ni∑

j=0

Pj(x).

So we see that
∑ni

j=0 Pj(0) = RHS of (27), and (26) is satisfied with α
(i)
0 ,

α
(i)
2 , . . ., α

(i)
ni respectively replaced by P0(0), P2(0), . . . , Pni

(0). As X
(i) is a met-

ric scheme, the square matrix on the LHS of (26) is invertible, and hence

α
(i)
0 = P0(0), α

(i)
2 = P2(0), . . . , α

(i)
ni = Pni

(0). In particular,
∑ni

j=0 Pj(0) =

α
(i)
0 + α

(i)
2 + · · · + α

(i)
ni . �

Theorem 11. Let X = (X = X1 × · · · × Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X(t) be a

weak metric scheme. Assume ψ(i)(x)’s are as in (22) and (23). Let ψ
(1)
n1+1(x)

be the polynomial of degree n1 + 1 defined by:

ψ
(1)
n1+1(x) = (x − a(1)

n1
)ψ(1)

n1
(x) − b

(1)
n1−1ψ

(1)
n1−1(x).

Then

ψ
(1)
n1+1(x) =

1

c
(1)
2 · · · c

(1)
n1

(x− θ
(1)
0 )(x− θ

(1)
n2+1)(x− θ

(1)
n2+2) · · · (x− θ

(1)
n1

)(28)

= (x− θ
(1)
0 )

n1∑

j=0

ψ
(1)
j (x).(29)

For 2 ≤ i ≤ t, let ψ
(i)
ni+1(x) be the polynomial of degree ni + 1 defined by:

ψ
(i)
ni+1(x) = (x− a(i)

ni
)ψ(i)

ni
(x) − b

(i)
ni−1ψ

(i)
ni−1(x) + α(i)

ni
(v0 + · · · + vni−1

)x+ τi,

(30)

with

τi =
(−1)ni+1θ

(i)
0 θ

(i)
ni+1+1 · · · θ

(i)
ni

c
(i)
2 · · · c

(i)
ni

.

Then

ψ
(i)
ni+1(x) =

1

c
(i)
2 · · · c

(i)
ni

(x − θ
(i)
0 )(x − θ

(i)
ni+1+1) · · · (x− θ

(i)
ni

)(31)

= (x− θ
(i)
0 )

ni∑

j=0

ψ
(i)
j (x),(32)

with

ψ
(i)
0 (x) =

(−1)niθ
(i)
ni+1+1 · · · θ

(i)
ni

c
(i)
2 c

(i)
3 · · · c

(i)
ni

.(33)
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Note here that

τi = −θ
(i)
0 ψ

(i)
0 (x) = −v(i)ψ

(i)
0 (x).(34)

Proof. As ψ
(i)
k (0) = 0 for 2 ≤ i ≤ t, 1 ≤ k ≤ ni, ψ

(i)
0 (x) is the constant

polynomial in (33) if (31) and (32) are true.
Let i = 1. From (22), we see that

B









ψ
(1)
0 (x)

ψ
(1)
1 (x)

...

ψ
(1)
n1

(x)









=








0
...
0

ψ
(1)
n1+1(x)







,(35)

where B = xIn1+1 − t[L(1)]. So, by multiplying the adjoint Adj(B) on both
sides, we get:

|B|









ψ
(1)
0 (x)

ψ
(1)
1 (x)

...

ψ
(1)
n1 (x)









= Adj(B)








0
...
0

ψ
(1)
n1+1(x)







.(36)

By looking at the first component, from (36) we have:

|B| = c
(1)
2 · · · c(1)n1

ψ
(1)
n1+1(x).

So

ψ
(1)
n1+1(x) =

1

c
(1)
2 · · · c

(1)
n1

char poly([L(1)]),(37)

where char poly([L(1)]) is an abbreviation for the characteristic polynomial of

[L(1)]. On the other hand, from PL(1)P−1 = diag(θ
(1)
0 , θ

(1)
1 , . . . , θ

(1)
n ) and (18),

we have:

char poly([L(1)])(x − θ
(1)
0 )n−n1

=char poly(L(1))

=(x− θ
(1)
0 ) · · · (x− θ(1)n ).

In view of Remark 6, this implies that

char poly([L(1)]) = (x− θ
(1)
0 )(x− θ

(1)
n2+1) · · · (x− θ

(1)
n1

).(38)

Now, (28) follows from (37) and (38). Also, we have (29) by multiplying both
sides of (35) by [1 · · · 1] on the left (cf. (15)).
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Let i ≥ 2. From (23), (24), and (30), we see that

C














ψ
(i)
0 (x) + λi−1

ψ
(i)
1 (x)

ψ
(i)
2 (x) + α

(i)
2 λi−1

...

...

ψ
(i)
ni (x) + α

(i)
ni λi−1














=












xψ
(i)
0 (x)
τi
0
...
0

△(x)












,(39)

where △(x) = ψ
(i)
ni+1(x) − τi − (b

(i)
ni−1α

(i)
ni−1 + a

(i)
ni α

(i)
ni )λi−1, and C = xIni+1 −

t(λi−1L
(i)
1 ) (cf. (12), Remark 8), with

t(λi−1L
(i)
1 ) =













0 λi−1

v(i) a
(i)
1 c

(i)
2

b
(i)
1 a

(i)
2 c

(i)
3

. . .
. . .

. . .

b
(i)
ni−2 a

(i)
ni−1 c

(i)
ni

b
(i)
ni−1 a

(i)
ni













.

Putting x = 0 in (39) and multiplying both sides on the left by [1 · · · 1], we get:

− v(i)(ψ
(i)
0 (x) + (1 + α

(i)
2 + · · · + α(i)

ni
)λi−1)

= τi − (b
(i)
ni−1α

(i)
ni−1 + a(i)

ni
α(i)

ni
)λi−1

⇔ τi = − (b
(i)
ni−1α

(i)
ni−1 + a(i)

ni
α(i)

ni
)λi−1

(cf. (16), (25), (30), (33), (34)). So △(x) = ψ
(i)
ni+1(x). Taking this into

consideration, we have (32) after multiplying both sides of (39) on the left by
[1 · · · 1].

On the other hand,

(x− θ
(i)
0 )(x− θ

(i)
1 ) · · · (x− θ(i)n )

= det(xIn+1 −
tL(i))

= det D

= xni−1 (x − θ
(i)
0 )ni+1 char poly(λi−1L

(i)
1 ),
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where

D =

















xIni−1
∗ 0

0 xIni+1 −
t(λi−1L

(i)) 0

0 0 (x− v(i))Ini+1

















.

D can be obtained from xIn+1 − tL(i), by first adding the column (ni−1 + 1)
to each of the columns one through ni−1 and then adding the columns one

through ni−1 to the column (ni−1 + 1).
So, by Remark 6,

char poly(λi−1L
(i)
1 ) = (x− θ

(i)
0 )(x − θ

(i)
ni+1+1) · · · (x− θ

(i)
ni

).

Now, after multiplying both sides of (39) by Adj(C) on the left and looking at
the second component, we get:

x char poly(λi−1L
(i)
1 ) = |C

′

|,

where C
′

is the matrix obtained from C by replacing the second column by
t[xψ

(i)
0 (x) τi 0 · · · 0 ψ

(i)
ni+1(x)]. It is now easy to see that

|C
′

| = (c
(i)
2 · · · c(i)ni

ψ
(i)
ni+1(x))x.

Thus char poly(λi−1L
(i)
1 ) = c

(i)
2 · · · c

(i)
niψ

(i)
ni+1(x). This shows (31). �

5. Weak cometric schemes

Let X = (X = X1 × · · · ×Xt, {Rj}
n
j=0) = X

(1) ≀ · · · ≀ X(t) be the symmetric
association scheme which is given as the wreath product of the symmetric asso-

ciation schemes X
(i) = (Xi, {R

(i)
j }ni

j=0) (cf. Section 2). Then such a symmetric
association scheme X will be called a weak cometric scheme if it satisfies the
equivalent conditions in Theorem 13.

Lemma 12. Let W1, . . . ,Wm, W
′
1, . . . ,W

′
n (m,n ∈ Z≥0), S, T be matrices

with entries in a field. Assume that W1, . . . ,Wm, W
′
1, . . . ,W

′
n are nonzero. If

W1 ⊗ · · · ⊗Wm ⊗ S ⊗W ′
1 ⊗ · · · ⊗W ′

n = W1 ⊗ · · · ⊗Wm ⊗ T ⊗W ′
1 ⊗ · · · ⊗W ′

n,

then we have S = T .

Proof. For this, we only need to show:

W ⊗ S = W ⊗ T and W 6= 0, or S ⊗W = T ⊗W and W 6= 0 ⇒ S = T.

But this is trivial to see. �
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Theorem 13. The following are equivalent.

(a)

(i) The submatrix [M (i)] = (qk
ni+1+1, l)ni+1≤k, l≤ni

of

M (i) = (qk
ni+1+1, l)0≤k, l≤n

is a tridiagonal matrix with nonzero off-diagonal entries for i = 1, 2,
. . ., t.
Moreover, M (i) has the following entries.

(ii) (qk
ni+1+1, l)ni+1≤k, l≤n = m(i)I,

(iii) qk
ni+1+1, ni+1+1 = m(i) for 0 ≤ k ≤ ni+1,

(iv) q
ni+1+1
ni+1+1, l = ml for 0 ≤ l ≤ ni+1,

(v) all the other entries not appearing in (i)-(iv) are zeros.

(b) There are polynomials with real coefficients φ
(t)
0 (x) of degree 0 (φ

(t)
0 (x) =

|X |−1), φ
(i)
k (x) of degree k for i = 1, . . . , t, 1 ≤ k ≤ ni, with φ

(i)
k (0) = 0,

(1 ≤ i ≤ t − 1), and real numbers β
(t)
0 = · · · = β

(t)
nt = 0, β

(t−1)
1 , . . ., β

(t−1)
nt−1

, . . .,

β
(1)
1 , . . ., β

(1)
n1

such that

Eni+1+i0 = φ
(i)
i0

(Eni+1+1) + β
(i)
i0

(E0 + · · · + Eni+1
)(40)

for i = 1, 2 . . . , t, 1 ≤ i0 ≤ ni, or i = t, i0 = 0.
(c) q-numbers satisfy

qj, ni+1+i0 = φ̃
(i)
i0

(ω
(i)
j ) + β

(i)
i0

(qj0 + · · · + qj, ni+1
)

for i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = t, i0 = 0, j = 0, 1, . . . , n.

Here β
(i)
i0

’s are the same as in (b), φ̃
(i)
i0

(x) = |X | φ
(i)
i0

(|X |−1x), and ω
(i)
j =

qj, ni+1+1.

(d) X
(i) = (Xi, {R

(i)
j }ni

j=0) is a cometric scheme for i = 1, . . . , t.

Proof. First, we note the following: for i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = t, i0 =
0,

Eni+1+i0 ◦ El = |X |−1 ml Eni+1+i0 (0 ≤ l ≤ ni+1).(41)

For this, we need to see: for t ≥ j > i, 1 ≤ k ≤ nj , or j = t, k = 0,

Eni+1+i0 ◦ Enj+1+k = |X |−1 mnj+1+k Eni+1+i0 .

But this can be shown just as in the proof of Theorem 7.
(a) ⇒ (b) Assume that [M (i)] = (qk

ni+1, l)ni+1≤k, l≤ni
is given by:

[M (i)] =











e
(i)
0 f

(i)
0

g
(i)
1 e

(i)
1 f

(i)
1

. . .
. . .

. . .

g
(i)
ni−1 e

(i)
ni−1 f

(i)
ni−1

g
(i)
ni e

(i)
ni











.(42)
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Observe here that e
(i)
0 = 0, f

(i)
0 = m(i), g

(i)
1 = mni+1

.

Define the polynomials φ
(t)
i (x) of degree i (0 ≤ i ≤ nt) recursively by:

φ
(t)
0 (x) = |X |−1, φ

(t)
1 (x) = x,

xφ
(t)
i (x) = f

(t)
i−1φ

(t)
i−1(x) + e

(t)
i φ

(t)
i (x) + g

(t)
i+1φ

(t)
i+1(x) (i ≥ 1).

Also, define β
(t)
0 = β

(t)
1 = · · · = β

(t)
nt = 0. Then

Ei0 = φ
(t)
i0

(E1) + β
(t)
i0
E0 for 0 ≤ i0 ≤ nt.

Here the multiplication is the Hadamard product and we understand that

φ
(t)
0 (E1) = |X |−1J = E0.
Starting from t− 1, we apply an inductive argument to show (40) for each

i = t− 1, . . . , 1, 1 ≤ i0 ≤ ni.
Before proceeding further, we note, using (42), that (a) is equivalent to:

(43) Eni+1+1 ◦ El = |X |−1mlEni+1+1 (0 ≤ l ≤ ni+1),

(44)

Eni+1+1 ◦Eni+1+1 = |X |−1{m(i)(E0 + · · ·+Eni+1
)+ e

(i)
1 Eni+1+1 + g

(i)
2 Eni+1+2}

with g
(i)
2 6= 0,

(45)
Eni+1+1 ◦ Eni+1+i0

= |X |−1{f
(i)
i0−1Eni+1+i0−1 + e

(i)
i0
Eni+1+i0 + g

(i)
i0+1Eni+1+i0+1} (2 ≤ i0 ≤ ni)

with f
(i)
i0−1 6= 0 (2 ≤ i0 ≤ ni), g

(i)
i0+1 6= 0 (2 ≤ i0 ≤ ni − 1), g

(i)
ni+1 = 0,

(46) Eni+1+1 ◦ El = |X |−1m(i)El (ni + 1 ≤ l ≤ n).

Define φ
(i)
1 (x) = x, β

(i)
1 = 0. Then

Eni+1+1 = φ
(i)
1 (Eni+1+1) + β

(i)
1 (E0 + · · · + Eni+1

).

Also, if we define

φ
(i)
2 (x) = g

(i)
2

−1
(|X |x2 − e

(i)
1 x), β

(i)
2 = −g

(i)
2

−1
m(i),

then
Eni+1+2 = φ

(i)
2 (Eni+1+1) + β

(i)
2 (E0 + · · · + Eni+1

).

Assume that φ
(i)
1 , . . . , φ

(i)
i0
, β

(i)
1 , . . . , β

(i)
i0

(2 ≤ i0 < ni) are defined so that

Eni+1+j0 = φ
(i)
j0

(Eni+1+1) + β
(i)
j0

(E0 + · · · + Eni+1
),

and φ
(i)
j0

(0) = 0 holds for all 1 ≤ j0 ≤ i0.

Define the polynomial φ
(i)
i0+1(x) and β

(i)
i0+1 respectively by:

φ
(i)
i0+1(x) = g

(i)−1

i0+1 {|X |xφ
(i)
i0

(x) + β
(i)
i0

(m0 + · · · +mni+1
)x

− f
(i)
i0−1φ

(i)
i0−1(x) − e

(i)
i0
φ

(i)
i0

(x)},
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β
(i)
i0+1 = − g

(i)−1

i0+1 (f
(i)
i0−1β

(i)
i0−1 + e

(i)
i0
β

(i)
i0

).

Then
Eni+1+i0+1 = φ

(i)
i0+1(Eni+1+1) + β

(i)
i0+1(E0 + · · · + Eni+1

).

Note here that φ
(i)
i0+1(0) = 0. This shows (40).

(b) ⇒ (a) We have to show (43)-(46). By (41), (43), and (46) hold. Let
i = t. Then we only need to show (45) for 1 ≤ i0 ≤ nt. By our as-

sumption, Ei0 = φ
(t)
i0

(E1) for 0 ≤ i0 ≤ nt. Since xφ
(t)
i0

(x) is a linear com-

bination of φ
(t)
i0+1(x), φ

(t)
i0

(x), . . . , φ
(t)
0 (x), E1 ◦ Ei0 is a linear combination of

Ei0+1, Ei0 , . . . , E0. Clearly, the coefficient of Ei0+1 is not zero. This says

qj
1i0

= 0 for j ≥ i0 + 2, and qj
1i0

6= 0 for j = i0 + 1. As mjq
j
ki = miq

i
kj , q

i
1j =

0 ⇔ qj
1i = 0. So qj

1i0
= 0 if |j − i0| ≥ 2, and qj

1i0
6= 0 if |j − i0| = 1.

Let i ≤ t− 1. First, we show (45). By our assumption (40) and (41),

Eni+1+1 ◦ Eni+1+i0

=φ
(i)
i0

(Eni+1+1) ◦ Eni+1+1 + |X |−1β
(i)
i0

(m0 + · · · +mni+1
)Eni+1+1.

So, if we put

xφ
(i)
i0

(x) + |X |−1β
(i)
i0

(m0 + · · · +mni+1
)x =

i0+1∑

j=0

εjφ
(i)
j (x)

for some εj with εi0+1 6= 0, then, by (40),

Eni+1+1 ◦ Eni+1+i0

= −

i0+1∑

j=0

εjβ
(i)
j (E0 + · · · + Eni+1

) +

i0+1∑

j=1

εjEni+1+j .

By the same argument as above, q
ni+1+j0
ni+1+1,ni+1+i0

= 0 if |j0 − i0| ≥ 2, and

q
ni+1+j0
ni+1+1,ni+1+i0

6= 0 if |j0 − i0| = 1. Next, we show (44). By (40) with i0 = 2,

we have:

Eni+1+2 = |X |eEni+1+1 ◦ Eni+1+1 + fEni+1+1 + β
(i)
2 (E0 + · · · + Eni+1

)

for some e, f with e 6= 0. So, taking the proof of Theorem 7 into account, we
get:

Eni+1+1 ◦Eni+1+1 = |X |−1{m(i)(E0 + · · ·+Eni+1
)+ e

(i)
1 Eni+1+1 + g

(i)
2 Eni+1+2}

with g
(i)
2 6= 0, where we put e

(i)
1 = −e−1f, g

(i)
2 = e−1.

(b) ⇔ (c) This is straightforward.
(b) ⇔ (d) For i = 1, . . . , t, 1 ≤ i0 ≤ ni, or i = t, i0 = 0, put

Φ
(i)
i0

(x) = |X1| · · · |Xi−1| φ
(i)
i0

((|X1| · · · |Xi−1|)
−1 x) + β

(i)
i0

|Xi|
−1.

Then we see that (40) is equivalent to:

E
(1)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ Φ

(i)
i0

(E
(i)
1 ) ⊗ I ⊗ · · · ⊗ I
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= E
(i)
0 ⊗ · · · ⊗E

(i−1)
0 ⊗ E

(i)
i0

⊗ I ⊗ · · · ⊗ I.

In view of Lemma 12, this in turn is equivalent to E
(i)
i0

= Φ
(i)
i0

(E
(i)
1 ) (cf. [2,

pp. 193–194]). �

6. An example

Let X = (X, {Rj}
n
j=0) be any symmetric association scheme. Let A be the

Bose-Mesner algebra of X generated by the adjacency matrices A0, A1, . . . , An

∈ M|X|(C), pk
jl the intersection numbers of X, Lj = (pk

jl) (j = 0, 1, . . . , n) the

intersection matrices of X, and let B be the subalgebra of Mn+1(C) generated
by L0, L1, . . . , Ln. Then the map A → B (Ai 7→ Li) is an isomorphism as
algebras over C.

In view of this isomorphism and since |X | is much bigger then n + 1, we
will express the modified polynomial relations for H(4, 3, 5; 2) below in terms
of intersection matrices. For this example, observe that |X | = 4096, while
n+ 1 = 13.

Now, we consider the weak Hamming schemeH(4, 3, 5; 2) = H(4, 2)≀H(3, 2)≀
H(5, 2), which is associated with the poset P0 = 41⊕ 31⊕ 51.

b b b b b

b b b

b b b b

The P -matrices of H(4, 2), H(3, 2), H(5, 2) are respectively given by
( 1 4 6 4 1

1 2 0 −2 −1
1 0 −2 0 1
1 −2 0 2 −1
1 −4 6 −4 1

)

,

(
1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

)

,





1 5 10 10 5 1
1 3 2 −2 −3 −1
1 1 −2 2 1 1
1 −1 −2 2 1 −1
1 −3 2 2 −3 1
1 −5 10 −10 5 −1



, and the P -matrix of

H(4, 3, 5; 2) is













1 4 6 4 1 48 48 16 640 1280 1280 640 128
1 4 6 4 1 48 48 16 384 256 −256 −384 −128
1 4 6 4 1 48 48 16 128 −256 −256 128 128
1 4 6 4 1 48 48 16 −128 −256 256 128 −128
1 4 6 4 1 48 48 16 −384 256 256 −384 128
1 4 6 4 1 48 48 16 −640 1280 −1280 640 −128
1 4 6 4 1 16 −16 −16 0 0 0 0 0
1 4 6 4 1 −16 −16 16 0 0 0 0 0
1 4 6 4 1 −48 48 −16 0 0 0 0 0
1 2 0 −2 −1 0 0 0 0 0 0 0 0
1 0 −2 0 1 0 0 0 0 0 0 0 0
1 −2 0 2 −1 0 0 0 0 0 0 0 0
1 −4 6 −4 1 0 0 0 0 0 0 0 0













.
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Intersection matrices Li (i = 0, 1, . . . , 12) are respectively given by:

L1 =











0 4 0 0 0 0 0 0 0 0 0 0 0
1 0 3 0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 0 0 0 0 0 0 0 0
0 0 3 0 1 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 4











, L2 =











0 0 6 0 0 0 0 0 0 0 0 0 0
0 3 0 3 0 0 0 0 0 0 0 0 0
1 0 4 0 1 0 0 0 0 0 0 0 0
0 3 0 3 0 0 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0 0 0
0 0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 6











,

L3 =











0 0 0 4 0 0 0 0 0 0 0 0 0
0 0 3 0 1 0 0 0 0 0 0 0 0
0 2 0 2 0 0 0 0 0 0 0 0 0
1 0 3 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 4











, L4 =











0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1











,

L5 =











0 0 0 0 0 48 0 0 0 0 0 0 0
0 0 0 0 0 48 0 0 0 0 0 0 0
0 0 0 0 0 48 0 0 0 0 0 0 0
0 0 0 0 0 48 0 0 0 0 0 0 0
0 0 0 0 0 48 0 0 0 0 0 0 0
1 4 6 4 1 0 32 0 0 0 0 0 0
0 0 0 0 0 32 0 16 0 0 0 0 0
0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 0 0 0 48 0 0 0 0
0 0 0 0 0 0 0 0 0 48 0 0 0
0 0 0 0 0 0 0 0 0 0 48 0 0
0 0 0 0 0 0 0 0 0 0 0 48 0
0 0 0 0 0 0 0 0 0 0 0 0 48











, L6 =











0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 32 0 16 0 0 0 0 0
1 4 6 4 1 0 32 0 0 0 0 0 0
0 0 0 0 0 48 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 48 0 0 0 0
0 0 0 0 0 0 0 0 0 48 0 0 0
0 0 0 0 0 0 0 0 0 0 48 0 0
0 0 0 0 0 0 0 0 0 0 0 48 0
0 0 0 0 0 0 0 0 0 0 0 0 48











,

L7 =











0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 16 0 0 0 0 0 0
0 0 0 0 0 16 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 16 0 0 0 0
0 0 0 0 0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 0 0 0 0 0 16











, L8=











0 0 0 0 0 0 0 0 640 0 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0
1 4 6 4 1 48 48 16 0 512 0 0 0
0 0 0 0 0 0 0 0 256 0 384 0 0
0 0 0 0 0 0 0 0 0 384 0 256 0
0 0 0 0 0 0 0 0 0 0 512 0 128
0 0 0 0 0 0 0 0 0 0 0 640 0











,

L9 =











0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0
0 0 0 0 0 0 0 0 512 0 768 0 0
1 4 6 4 1 48 48 16 0 768 0 384 0
0 0 0 0 0 0 0 0 384 0 768 0 128
0 0 0 0 0 0 0 0 0 768 0 512 0
0 0 0 0 0 0 0 0 0 0 1280 0 0











, L10 =











0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 0 1280 0 0
0 0 0 0 0 0 0 0 0 768 0 512 0
0 0 0 0 0 0 0 0 384 0 768 0 128
1 4 6 4 1 48 48 16 0 768 0 384 0
0 0 0 0 0 0 0 0 512 0 768 0 0
0 0 0 0 0 0 0 0 0 1280 0 0 0











,

L11 =











0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 0 640 0
0 0 0 0 0 0 0 0 0 0 512 0 128
0 0 0 0 0 0 0 0 0 384 0 256 0
0 0 0 0 0 0 0 0 256 0 384 0 0
1 4 6 4 1 48 48 16 0 512 0 0 0
0 0 0 0 0 0 0 0 640 0 0 0 0











, L12 =











0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 0 128
0 0 0 0 0 0 0 0 0 0 0 128 0
0 0 0 0 0 0 0 0 0 0 128 0 0
0 0 0 0 0 0 0 0 0 128 0 0 0
0 0 0 0 0 0 0 0 128 0 0 0 0
1 4 6 4 1 48 48 16 0 0 0 0 0











.

Finally, we have the result about modified polynomial relations of intersec-
tion matrices (cf. Theorem 2(c)).

L1, L2 =
1

2
L2

1 − 2I, L3 =
1

6
L3

1 −
5

3
L1, L4 =

1

24
L4

1 −
2

3
L2

1 + I,
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L5, L6 =
1

32
L2

5 −
3

2
(I + L1 + · · · + L4), L7 =

1

1536
L3

5 −
7

6
L5,

L8, L9 =
1

256
L2

8 −
5

2
(I + L1 + · · · + L7), L10 =

1

98304
L3

8 −
13

6
L8,

L11 =
1

50331648
L4

8 −
11

1536
L2

8 +
15

8
(I + L1 + · · · + L7),

L12 =
1

32212254720
L5

8 −
1

65536
L3

8 +
149

120
L8.
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