Performance Evaluation Method of User Identification and User Tracking for Intelligent Robots Using Face Images

얼굴영상을 이용한 지능형 로봇의 개인식별 및사용자 추적 성능평가 방법

  • Received : 2009.05.18
  • Accepted : 2009.07.29
  • Published : 2009.08.31

Abstract

In this paper, we deal with the performance evaluation method of user identification and user tracking for intelligent robots using face images. This paper shows general approaches for standard evaluation methods to improve intelligent robot systems as well as their algorithms. The evaluation methods proposed in this paper can be combined with the evaluation methods for detection algorithms of face region and facial components to measure the overall performance of face recognition in intelligent robots.

Keywords

References

  1. KS A 3011 조도 기준
  2. ISO 10918-1 JPEG 국제표준
  3. ISO/IEC-11172 MPEG-1 국제표준
  4. ISO/IEC-13818 MPEG-2 국제표준
  5. T.B. Fitzpatrick, "Soleil et peau", J. Med Esthet, 1975.
  6. Conversion between RGB and HSV/HSL, http://en.wikipedia.org/wiki/HSL_and_HSV#Conversion_from_HSL_to_RGB, 2009.
  7. J.G. Daugman, "Two dimensional spectral analysis of cortical receptive field profile", Vision Research 20: 847-856, 1980. https://doi.org/10.1016/0042-6989(80)90065-6
  8. D. Lowe, "Object recognition from local scale-invariant features", Proc. of the ICCV, pp.1150-1157, 1999.
  9. K. Pearson, "On Lines and Planes of Closest Fit to Systems of Points in Space", Philosophical Magazine 2(6): 559-572, 1901. https://doi.org/10.1080/14786440109462720
  10. P. Comon, "Independent Component Analysis: a new concept?", Signal Processing 36(3): 287-314, 1994. https://doi.org/10.1016/0165-1684(94)90029-9
  11. A. Oppenheim et al., Discrete-time signal processing, Prentice Hall, 1999.
  12. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.
  13. M. Turk and A. Pentland, "Eigenfaces for recognition", Journal of Cognitive Neuroscience 3(1): 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  14. J. Christopher, "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery 2: 121-167, 1998. https://doi.org/10.1023/A:1009715923555
  15. Homepage of CMU PIE Database, http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261, 2009.
  16. Homepage of CMU Cohn-Kanade Facial Expression/Face Database, http://vasc.ri.cmu.edu/idb/html/face/facial_expression/index.html, 2009.
  17. Homepage of AT&T Face Database, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, 2009.
  18. Homepage of Yale A/B Face Database, http://cvc.yale.edu/, 2009.
  19. J. Makhoul, "Performance measures for information extraction", Proc.of DARPA Broadcast News Workshop, 1999.
  20. J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, pp.128-129, 1999.
  21. V. Rijsbergen, C.V.: Information Retrieval, 2nd Edition, 1979.
  22. Homepage of Wikipedia – Receiver operating characteristic, http://en.wikipedia.org/wiki/Receiver_operating_characteristic, 2009.
  23. J.A. Hanley and B.J. McNeil, "A method of comparing the areas under receiver operating characteristic curves derived from the same cases", Radiology 148(3): 839-843, 1983.
  24. D.G. Altman and J.M. Bland, "Diagnostic tests 2: Predictive values", BMJ 309(6947): 102, 1994.
  25. A. Munsell, "A Pigment Color System and Notation", The American Journal of Psychology 23: 236-244, 1912. https://doi.org/10.2307/1412843
  26. S.S. Beauchemin and J.L. Barron, The computation of optical flow, ACM New York, 1995.
  27. D. DeCarlo and D. Metaxas, "Optical Flow Constraints on Deformable Models with Applications to Face Tracking", Int'l Journal of Computer Vision 38(2): 99-127, 2000. https://doi.org/10.1023/A:1008122917811
  28. S. Basu, I. Essa, and A. Pentland, "Motion Regularization forModel-based Head Tracking", Proc. of ICPR'96, 1996.
  29. J.F. Cohn, A.J. Zlochower, J.J. Lien, and T. Kanade, "Feature-point tracking by optical flow discriminates subtle differences in facial expression", Proc. of AWFGR'98, pp.396-401, 1998.
  30. Y. Yacoob and L.S. Davis, "Recognizing Human Facial Expressions From Long Image Sequences Using Optical Flow", IEEE Trans. on Pattern Analysis and Machine Intelligence 18(6): 636-642, 1996. https://doi.org/10.1109/34.506414
  31. R.E. Kalman, "A new approach to linear filtering and prediction problems", Journal of Basic Engineering 82(1): 35-45, 1960. https://doi.org/10.1115/1.3662552
  32. K. Schwerdt and J.L. Crowley, "Robust face tracking using color", Proc. of AWFGR'00, pp.90-95, 2000.
  33. D. Comaniciu, V. Ramesh, and P. Meer, "Kernel-based object tracking", IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5): 564-577, 2003. https://doi.org/10.1109/TPAMI.2003.1195991
  34. R.J. Qian, M.I. Sezan, and K.E. Matthews, "A robust real-time face tracking algorithm", Proc. of ICIP'98, pp.131-135, 1998.
  35. P. Perez, C. Hue, J. Vermaak, and M. Gangnet, "Color-Based Probabilistic Tracking", Lecture Notes in Computer Science 2350: 661-675, 2002.