개 퇴행성 관절염 모델을 이용한 연골과 활액 내 단백질 분해 효소와 억제제의 작용 연구

Proteinases and their Inhibitors in Cartilage and Synovial Fluid Acquired from a Canine Osteoarthritic Model

  • 설재원 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소) ;
  • 이해범 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소) ;
  • 김남수 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소) ;
  • 이영훈 (전북대학교 치과대학 구강생체과학연구소) ;
  • 강형섭 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소) ;
  • 김인식 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소) ;
  • 박상열 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소)
  • Seo, Jae-Won (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Hae-Beom (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Nam-Soo (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Young-Hoon (Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Kang, Hyung-Sub (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, In-Shik (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Park, Sang-Youel (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University)
  • 발행 : 2009.04.30

초록

퇴행성관절염(Osteoarthritis,OA)은 관절 부위의 퇴행성 변화가 특징이며, 이를 진단하기 위해서는 연골세포나 활액에서 유래된 표지인자가 일반적으로 사용된다. 이번 연구에서는 개를 이용하여 실험적으로 퇴행성관절염을 유도하고, 활액과 연골세포에서 단백질 분해 효소인 matrix metalloproteinase(MMPs)와 MMPs의 활성을 억제시키는 것으로 알려진 tissue inhibitors of metalloproteinases(TIMPs)의 발현 정도를 조사하였다. 20마리의 비글견이 퇴행성관절염 모델로 사용되었으며 MMP-2 와 -9은 Western blot 분석에 의해서, TIMP-2의 농도는 ELISA(enzyme-linked immunosorbent assays)에 의해 결정하였다. 퇴행성관절염 유도 4주 후에 연골에서 분리한 연골세포에서 MMP-2의 발현은 증가되었지만 MMP-9의 발현은 감소되었다. 그러나, 퇴행성관절염을 유도한 개의 활액에서는 MMP-2와 -9의 발현이 모두 증가하는 것을 보였다. TIMP-2의 농도는 퇴행성관절염을 유도한 연골에서 분리한 연골세포에서는 높았지만, 활액에서는 낮은 농도를 보였다. 이러한 결과는 MMP-9가 퇴행성관절염 시 연골 조직의 변성에 따른 연골세포의 손상에 의해 MMP-2보다 더 활액으로 방출된다는 것을 보여주며, 활액 내 TIMP-2의 감소에 따른 MMPs의 활성이 퇴행성관절염을 더욱 악화시키는 것을 제안해준다. 결국 MMPs의 활성은, 특히 MMP-9, 개의 퇴행성관절염의 조기 진단과 치료를 위한 표지인자로서 사용할 수 있을 것으로 사료된다.

Chondrocytes and synovial fluid derived markers are used to monitor for osteoarthritis(OA). Specific inhibitors, known as tissue inhibitors of metalloproteinases(TIMP), regulate the proteolytic activity of matrix metalloproteinases(MMP). This study investigated whether MMP and TIMP levels were altered in synovial fluid and cartilage following the experimental induction of OA in canines. Twenty mature beagle dogs underwent a unilateral surgical transection of the cranial cruciate ligament and the medial collateral ligament as well as a medial meniscectomy. Matrix metalloproteinase-2 and MMP-9 levels were assayed using Western blot and TIMP-2 levels were measured with enzyme-linked immunosorbent assays four weeks after OA induction. Increased MMP-2 expression was observed in chondrocytes isolated from cartilage following OA induction, but MMP-9 expression decreased. Matrix metalloproteinase-2 and MMP-9 levels in synovial fluid from the OA induced joint significantly increased compared to those of the sham group. Tissue inhibitors of metalloproteinase-2 concentrations were higher in chondrocytes from the OA cartilage, yet TIMP-2 remained lower in the synovial fluid of OA. This suggests the elevated release of MMP-9 over MMP-2 into the synovial fluid following the cartilage degradation-related death of chondrocytes after OA. Osteoarthritis can be further deteriorated by increased MMP activity in the synovial fluid because TIMP-2 exist low concentration into the extracellular matrix. As a result, MMP activity, particularly MMP-9 activity, can be useful as a biomarker in diagnosing and monitoring the early stages of canine OA.

키워드

참고문헌

  1. Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G. Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J 1995; 309 (Pt 1): 299-306 https://doi.org/10.1042/bj3090299
  2. Arican M, Carter SD, Bennett D, May C. Measurement of glycosaminoglycans and keratan sulphate in canine arthropathies. Res Vet Sci 1994; 56: 290-297 https://doi.org/10.1016/0034-5288(94)90144-9
  3. Arican M, Carter SD, Bennett D. Osteocalcin in canine joint diseases. Br Vet J 1996; 152: 411-423 https://doi.org/10.1016/S0007-1935(96)80035-2
  4. Arican M, Carter SD, Bennett D, Ross G, Ayad S. Increased metabolism of collagen VI in canine osteoarthritis. J Comp Pathol 1996; 114: 249-256 https://doi.org/10.1016/S0021-9975(96)80046-6
  5. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000; 1477: 267-283 https://doi.org/10.1016/S0167-4838(99)00279-4
  6. Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF, Jr. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 1989; 84: 678-685 https://doi.org/10.1172/JCI114215
  7. Dingle JT. Catabolin--a cartilage catabolic factor from synovium. Clin Orthop Relat Res 1981; 219-231
  8. Green MJ, Gough AK, Devlin J, Smith J, Astin P, Taylor D, Emery P. Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology (Oxford) 2003; 42: 83-88 https://doi.org/10.1093/rheumatology/keg037
  9. Hegemann N, Kohn B, Brunnberg L, Schmidt MF. Biomarkers of joint tissue metabolism in canine osteoarthritic and arthritic joint disorders. Osteoarthritis Cartilage 2002; 10: 714-721 https://doi.org/10.1053/joca.2002.0820
  10. Hegemann N, Wondimu A, Ullrich K, Schmidt MF. Synovial MMP-3 and TIMP-1 levels and their correlation with cytokine expression in canine rheumatoid arthritis. Vet Immunol Immunopathol 2003; 91: 199-204 https://doi.org/10.1016/S0165-2427(03)00005-9
  11. Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum 2005; 52: 794-799 https://doi.org/10.1002/art.20943
  12. Ishiguro N, Ito T, Obata K, Fujimoto N, Iwata H. Determination of stromelysin-1, 72 and 92 kDa type IV collagenase, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2 in synovial fluid and serum from patients with rheumatoid arthritis. J Rheumatol 1996; 23: 1599-1604
  13. Knauper V, Bailey L, Worley JR, Soloway P, Patterson ML, Murphy G. Cellular activation of proMMP-13 by MT1-MMP depends on the C-terminal domain of MMP-13. FEBS Lett 2002; 532: 127-130 https://doi.org/10.1016/S0014-5793(02)03654-2
  14. Little C, Smith S, Ghosh P, Bellenger C. Histomorphological and immunohistochemical evaluation of joint changes in a model of osteoarthritis induced by lateral meniscectomy in sheep. J Rheumatol 1997; 24: 2199-2209
  15. Lohmander LS. What is the current status of biochemical markers in the diagnosis, prognosis and monitoring of osteoarthritis? Baillieres Clin Rheumatol 1997; 11: 711-726 https://doi.org/10.1016/S0950-3579(97)80006-4
  16. Morgan JP, Wind A, Davidson AP. Bone dysplasias in the labrador retriever: a radiographic study. J Am Anim Hosp Assoc 1999; 35: 332-340 https://doi.org/10.5326/15473317-35-4-332
  17. Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M, Stracke J, Clark I. Matrix metalloproteinases in arthritic disease. Arthritis Res 2002; 4 Suppl 3: S39-49 https://doi.org/10.1186/ar572
  18. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491-21494 https://doi.org/10.1074/jbc.274.31.21491
  19. Panula HE, Lohmander LS, Ronkko S, Agren U, Helminen HJ, Kiviranta I. Elevated levels of synovial fluid PLA2, stromelysin (MMP-3) and TIMP in early osteoarthrosis after tibial valgus osteotomy in young beagle dogs. Acta Orthop Scand 1998; 69: 152-158 https://doi.org/10.3109/17453679809117617
  20. Pond MJ, Nuki G. Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 1973; 32: 387-388 https://doi.org/10.1136/ard.32.4.387
  21. Posthumus MD, Limburg PC, Westra J, van Leeuwen MA, van Rijswijk MH. Serum matrix metalloproteinase 3 levels in comparison to C-reactive protein in periods with and without progression of radiological damage in patients with early rheumatoid arthritis. Clin Exp Rheumatol 2003; 21: 465-472
  22. Rogers J, Shepstone L, Dieppe P. Is osteoarthritis a systemic disorder of bone? Arthritis Rheum 2004; 50: 452-457 https://doi.org/10.1002/art.20136
  23. Rogers J, Shepstone L, Dieppe P. Is osteoarthritis a systemic disorder of bone? Arthritis Rheum 2004; 50: 452-457 https://doi.org/10.1002/art.20136
  24. Steffensen B, Wallon UM, Overall CM. Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J Biol Chem 1995; 270: 11555-11566 https://doi.org/10.1074/jbc.270.19.11555
  25. Ushiyama T, Chano T, Inoue K, Matsusue Y. Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis 2003; 62: 108-112 https://doi.org/10.1136/ard.62.2.108
  26. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92: 827-839 https://doi.org/10.1161/01.RES.0000070112.80711.3D
  27. Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K, Okada Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis 2000; 59: 455-461 https://doi.org/10.1136/ard.59.6.455