WLAN System을 위한 Short-Pin을 갖는 Snowflake 모양의 Dual-band(5.2/5.8 GBz) 마이크로스트립 패치 안테나 설계 및 제작

Design of a Dual-band Snowflake-Shaped Microstrip patch Antenna With Short-pin For 5.2/5.8 GHz WLAN System

  • 송준성 (인하대학교 통신공학연구실) ;
  • 최선호 (인하대학교 통신공학연구실) ;
  • 이화춘 (초당대학교 정보통신공학과) ;
  • 곽경섭 (인하대학교 정보통신대학원)
  • 발행 : 2009.04.30

초록

본 논문에서는 IEEE802.11 기반의 WLAN(5.2/5.8GHz)대역에서 동작하는 새로운 모양의 마이크로스트립 패치 안테나를 설계 및 제작하였다. 안테나의 크기는 $21.2{\times}16mm^2$이며 Taconic-RF30 기판을 사용하였다. 이동성을 위해 소형화 하였고, Snowflake패치 모양에 Short-pin을 삽입하여 dual-band 공진특성 및 적절한 대역곡을 얻고자 하였다. 또한 주변 회로 집적화를 위해 단일 양면기판을 사용하였고, 시뮬레이션 설계는 Snowflake모양과 Short-pin의 위치변화, 패치길이를 최적화하여 제작 및 측정하였다. 제작한 안테나의 대역폭(Return loss < -10dB) 은 5.2GHz 대역에서 220MHz, 5.8GHz 대역에서는 135MHz의 대역폭을 얻었다. 또한 $4.7{\sim}6.9dBi$의 이득을 얻었으며, 3-dB 빔폭(HPBW)은 E-Plane과 H-Plane이 5.1500Hz에서 각각 $73.2^{\circ}/82.75^{\circ}$, 5.3500Hz에서 $74.56^{\circ}/83.63^{\circ}$, 그리고 5.7850Hz에서 $86.24^{\circ}/85.15^{\circ}$로 측정되었다.

In this paper, a novel Snowflake-shaped microstrip patch antenna for application in the WLAN(5.2/5.8GHz) band is designed and fabricated. The size of antenna is $21.2{\times}16mm^2$ and substrate is used Taconic-RF30. To obtain sufficient bandwidth in Return loss <-10dB and dual resonance characteristic, the Short-pin is inserted on the patch and the coaxial probe source is used. The measured results of fabricated antenna show 220MHz and 135MHz bandwidth in Return loss <-10dB referenced to the WLAN(5.2/5.8GHz) band. The measured antenna gain is $4.7{\sim}6.9dBi$ in the WLAN(5.2/5.8GHz) band. The experimental 3-dB beam width in I-plane and H-plane are $73.2^{\circ}/82.75^{\circ}$ for 5.1500Hz, $74.56^{\circ}/83.63^{\circ}$ for 5.3500Hz, and $86.24^{\circ}/85.15^{\circ}$ for 5.7850Hz, respectively.

키워드

참고문헌

  1. R. Grag, P. Bhartia, I. Bahl and A. Ittipiboon,Microstrip Antenna Design Handbook, ArtechHouse, 2001
  2. D. M. Pozar, 'Microstrip antennas,' Proceedingsof the IEEE, Vol. 80, No. 1, pp. 79-91, Jan.1992 https://doi.org/10.1109/5.119568
  3. Y. P. Zhang, 'Finite-difference time-domain analysis of integrated ceramic ball grid arraypackage antenna for highly integrated wirelesstransceivers,' IEEE transactions on Antennaand Propagation, Vol. 52, issue 2, pp. 435-442,February 2004 https://doi.org/10.1109/TAP.2004.823889
  4. K. C. Gupta, P. S. Hall, Analysis and Design of Integrated Circuit Antenna Modules, NewYork: Wiley, 2000
  5. Y. Song, Y. C. Jiao, X. M. Wang, Z. B. Weng, 'Compact coplanar slotantenna fed by asymmetric coplanar strip for2.4/5 GHz WLAN operations,' Microwave andOptical Technology Letters / Vol. 50, No. 12,Dec 2008
  6. W. C. Liu, and F. M. Yeh 'Compact dual- andwide-band cpw-fed slot antenna for Wirelessapplications,' Microwave and Optical TechnologyLetters / Vol. 50, No. 3, March 2008 https://doi.org/10.1002/mop.23139
  7. K. P. Ray, 'Tuneable and dual-band circularmicrostrip antenna with stubs,' IEEE transactions on Antenna and Propagation, Vol.48, No. 7, July 2000 https://doi.org/10.1109/8.876321
  8. C. Yoon, S. H. Choi, H. C. Lee, and H. Y. Park 'Small microstrip patch antenna with short-pin using a dual-band operation,; Microwave and Optical Technology Letters / Vol. 50, No. 2,Feb 2008 https://doi.org/10.1002/mop.23099
  9. C. Y. Desmond Sim and S. Y. Tu, 'Dual-frequency shorted patch antenna for WLANapplications,' Microwave and Optical TechnologyLetters / Vol. 49, No. 2, Feb 2007 https://doi.org/10.1002/mop.22124
  10. J. Yoon, 'Fabrication and measurement ofmodified spiral-patch antenna for use as atriple-band (2.4GHz/5GHz) antenna,' Microwave and Optical Technology Letters / Vol. 48, No.7, Jul 2006 https://doi.org/10.1002/mop.21675