Inhibitory Effects of Piperine on the Production of Nitric Oxide, Interleukin-10 and Interleukine-12 in Murine Peritoneal Macrophages

복강 대식세포에서 피페린의 일산화질소, 인테루킨-10과 인테루킨-12의 억제 효과

  • Bae, Gi-Sang (Department of Herbology, College of Oriental Medicine, Wonkwang University) ;
  • Lee, Ju-Sung (Department of Circulatory Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Sung, Kang-Keyng (Department of Circulatory Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Park, Sung-Joo (Department of Herbology, College of Oriental Medicine, Wonkwang University)
  • 배기상 (원광대학교 한의과대학 본초학교실) ;
  • 이주성 (원광대학교 한의과대학 심계내과학교실) ;
  • 성강경 (원광대학교 한의과대학 심계내과학교실) ;
  • 박성주 (원광대학교 한의과대학 본초학교실)
  • Published : 2009.04.25

Abstract

The purpose of this study was to investigate the anti-inflammatory effects and cellular mechanism of piperine on murine peritoneal macrophages. To evaluate the effects of piperine, we examined the production of nitric oxide (NO), interleukin (IL)-10 and IL-12. To investigate inhibitory mechanism of piperine, we examined the MAPKs and Ik-Ba in murine peritoneal macrophages, Piperine itself does not have any cytotoxic effect and reduced lipopolysaccharid (LPS), Poly(I:C), CpG-ODN -induced production of NO, IL-10 and IL-12 in peritoneal macrophages. Piperine inhibited the activation of extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK 1/2) not the activation of p38 and the degradation of inhibitory kappa B a (Ik-Ba) in the LPS-stimulated murine peritoneal macrophages.ln conclusion, Piperine down-regulated LPS-induced production of NO, IL-10 and IL-12, which could provide a clinical basis for anti-inflammatory properties of piperine.

Keywords

References

  1. Singh, Y.N. Kava as over review. J. Ethnopharmacol. 37: 18-45, 1992
  2. Srinivasan, K. Black pepper and its pungent principle- piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 47(8):735-748, 2007 https://doi.org/10.1080/10408390601062054
  3. Pradeep, C.R., Kuttan, G. Effect of Piperine on the Inhibition of Nitric Oxide (NO) and TNF-a Production. Imunopharmacology and Immunotoxicology. 25(3):337-346, 2003 https://doi.org/10.1081/IPH-120024502
  4. Kumar, S., Singhal, V., Roshan, R., Sharma, A. Rembhotkar GW. Ghosh B. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur. J. Pharmacol. 575(1-3):177-186, 2007 https://doi.org/10.1016/j.ejphar.2007.07.056
  5. Pradeep, C.R., Kuttan, G. Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int. Immunopharmacol. 4(14):1795-1803, 2004 https://doi.org/10.1016/j.intimp.2004.08.005
  6. Charles, A. Janeway, Jr. Ruslan Medzhitov.Innate immune recognition. Annu. Rev. Immunol. 20: 197-216, 2002 https://doi.org/10.1146/annurev.immunol.20.083001.084359
  7. Lopez-Bojorques, L.N., Dehesa, A.Z., Reyes-Teran, G. Molecular mechanisms involved in the pathogenesis of septic shock. Arch. Med. Res. 35: 465-479, 2004 https://doi.org/10.1016/j.arcmed.2004.07.006
  8. Nathan, C., Xie, Q.W. Nitric oxide synthases: roles, tolls and controls. Cell 78: 915-918, 1994 https://doi.org/10.1016/0092-8674(94)90266-6
  9. Kwqamata, H., Ochiai, H., Mantani, N., terasawa, K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med. 28: 217-226, 2000 https://doi.org/10.1142/S0192415X0000026X
  10. Lee, B.G., Kim, S.H., Zee, O.P., Lee, K.R., Lee, H.Y., Han, J.W., Lee, H.W. Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by two-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol. 406: 301-309, 2000 https://doi.org/10.1016/S0014-2999(00)00680-4
  11. Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Yun, Y.G., Kwon, T.O., Chung, H.T. Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW 264.7 macrophages stimulated with interferon-and lipopolysaccharide. Gen Pharmacol. 35: 21-28, 2000 https://doi.org/10.1016/S0306-3623(01)00086-6
  12. Chiou, W.F., Chou, C.J., Chen, C.F. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 69: 625-635, 2001 https://doi.org/10.1016/S0024-3205(01)01154-7
  13. Horwood, N.J., Page, T.H., McDaid, J.P., Palmer, C.D., Campbell, J., Mahon, T., Brennan, F.M., Webster, D., Foxwell, B.M. Bruton's tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J Immunol. 176(6):3635-3641, 2006 https://doi.org/10.4049/jimmunol.176.6.3635
  14. Hirohashi, N., Morrison, D.C. Low-dose lipopolysaccharid (LPS) pretreatment of mouse macrophage modulates LPS-dependent interleukin-6 production in vitro. Infect Immun 64(3):1011, 1996
  15. Matsuda, H., Morikawa, T., Ando, S., Toguchida, I. and Yoshikawa, M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorganic Med. Chem. 11: 1995-2000, 2003 https://doi.org/10.1016/S0968-0896(03)00067-1
  16. Calixto, J.B., Campos, M.M., Otuki, M.F., Santos, A.R. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70(2):93-103, 2004 https://doi.org/10.1055/s-2004-815483
  17. Atal, C.K., Dubey, R.K., Singh, J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J. Pharmacol. Exp. Ther. 232(1):258-262, 1985
  18. Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64(4):353-356, 1998 https://doi.org/10.1055/s-2006-957450
  19. Mujumdar, A.M., Dhuley, J.N., Deshmukh, V.K., Raman, P.H., Naik, S.R. Anti-inflammatory activity of piperine. Jpn. J. Med. Sci. Biol. 43(3):95-100, 1999
  20. Hansson, G.K., Edwards, K. Toll to be paid at the gateway to the vessel wall. Arterioscler. Thromb. Vasc. Biol. 25(6):1085-1087, 2005 https://doi.org/10.1161/01.ATV.0000168894.43759.47
  21. Bhattacharyya, A., Pathak, S., Datta, S., Chattopadhyay, S., Basu, J., Kundu, M. Mitogen-activated protein kinases and NF-kappaB regulate H. pylori-mediated IL-8 release from macrophages. Biochem J. 366: 376-382, 2002.
  22. Binetruy, B., Smeal, T., Kariu, M. Ha-Ras augments9 c-Jun activity and stimulates phosphoylation of its activation domain. Nature 351: 122-127, 1991 https://doi.org/10.1038/351122a0
  23. Garrington, T.P., Johnson, G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 11: 211-218, 1999 https://doi.org/10.1016/S0955-0674(99)80028-3
  24. Seo, J.H., Lim, J.W., Kim, H., Kim, K.H. Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases. AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. lab Invest. 84: 49-62, 2004 https://doi.org/10.1038/labinvest.3700010
  25. Lee, A.K., Sung, S.H., Kim, Y.C., Kim, S.G. Inhibition of lipopolysaccharide-inducible nitiric oxide synthase.TNF-$\alpha$ and COX-2 expression by suchinone effects on ${I}\kappa$-${B}\alpha$ phosphorylation.C/EBP and AP-1 activation. British J. Phamacol. 139: 11-20, 2003 https://doi.org/10.1038/sj.bjp.0705231
  26. Meng, F., Lowell, C.A. Lipopolysaccharide(LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinase Hck, Fgr, and Lyn. J Exp Med. 185(9):1661, 1997 https://doi.org/10.1084/jem.185.9.1661