References
- Singh, Y.N. Kava as over review. J. Ethnopharmacol. 37: 18-45, 1992
- Srinivasan, K. Black pepper and its pungent principle- piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 47(8):735-748, 2007 https://doi.org/10.1080/10408390601062054
- Pradeep, C.R., Kuttan, G. Effect of Piperine on the Inhibition of Nitric Oxide (NO) and TNF-a Production. Imunopharmacology and Immunotoxicology. 25(3):337-346, 2003 https://doi.org/10.1081/IPH-120024502
- Kumar, S., Singhal, V., Roshan, R., Sharma, A. Rembhotkar GW. Ghosh B. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur. J. Pharmacol. 575(1-3):177-186, 2007 https://doi.org/10.1016/j.ejphar.2007.07.056
- Pradeep, C.R., Kuttan, G. Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int. Immunopharmacol. 4(14):1795-1803, 2004 https://doi.org/10.1016/j.intimp.2004.08.005
- Charles, A. Janeway, Jr. Ruslan Medzhitov.Innate immune recognition. Annu. Rev. Immunol. 20: 197-216, 2002 https://doi.org/10.1146/annurev.immunol.20.083001.084359
- Lopez-Bojorques, L.N., Dehesa, A.Z., Reyes-Teran, G. Molecular mechanisms involved in the pathogenesis of septic shock. Arch. Med. Res. 35: 465-479, 2004 https://doi.org/10.1016/j.arcmed.2004.07.006
- Nathan, C., Xie, Q.W. Nitric oxide synthases: roles, tolls and controls. Cell 78: 915-918, 1994 https://doi.org/10.1016/0092-8674(94)90266-6
- Kwqamata, H., Ochiai, H., Mantani, N., terasawa, K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med. 28: 217-226, 2000 https://doi.org/10.1142/S0192415X0000026X
- Lee, B.G., Kim, S.H., Zee, O.P., Lee, K.R., Lee, H.Y., Han, J.W., Lee, H.W. Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by two-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol. 406: 301-309, 2000 https://doi.org/10.1016/S0014-2999(00)00680-4
- Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Yun, Y.G., Kwon, T.O., Chung, H.T. Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW 264.7 macrophages stimulated with interferon-and lipopolysaccharide. Gen Pharmacol. 35: 21-28, 2000 https://doi.org/10.1016/S0306-3623(01)00086-6
- Chiou, W.F., Chou, C.J., Chen, C.F. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 69: 625-635, 2001 https://doi.org/10.1016/S0024-3205(01)01154-7
- Horwood, N.J., Page, T.H., McDaid, J.P., Palmer, C.D., Campbell, J., Mahon, T., Brennan, F.M., Webster, D., Foxwell, B.M. Bruton's tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J Immunol. 176(6):3635-3641, 2006 https://doi.org/10.4049/jimmunol.176.6.3635
- Hirohashi, N., Morrison, D.C. Low-dose lipopolysaccharid (LPS) pretreatment of mouse macrophage modulates LPS-dependent interleukin-6 production in vitro. Infect Immun 64(3):1011, 1996
- Matsuda, H., Morikawa, T., Ando, S., Toguchida, I. and Yoshikawa, M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorganic Med. Chem. 11: 1995-2000, 2003 https://doi.org/10.1016/S0968-0896(03)00067-1
- Calixto, J.B., Campos, M.M., Otuki, M.F., Santos, A.R. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70(2):93-103, 2004 https://doi.org/10.1055/s-2004-815483
- Atal, C.K., Dubey, R.K., Singh, J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J. Pharmacol. Exp. Ther. 232(1):258-262, 1985
- Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64(4):353-356, 1998 https://doi.org/10.1055/s-2006-957450
- Mujumdar, A.M., Dhuley, J.N., Deshmukh, V.K., Raman, P.H., Naik, S.R. Anti-inflammatory activity of piperine. Jpn. J. Med. Sci. Biol. 43(3):95-100, 1999
- Hansson, G.K., Edwards, K. Toll to be paid at the gateway to the vessel wall. Arterioscler. Thromb. Vasc. Biol. 25(6):1085-1087, 2005 https://doi.org/10.1161/01.ATV.0000168894.43759.47
- Bhattacharyya, A., Pathak, S., Datta, S., Chattopadhyay, S., Basu, J., Kundu, M. Mitogen-activated protein kinases and NF-kappaB regulate H. pylori-mediated IL-8 release from macrophages. Biochem J. 366: 376-382, 2002.
- Binetruy, B., Smeal, T., Kariu, M. Ha-Ras augments9 c-Jun activity and stimulates phosphoylation of its activation domain. Nature 351: 122-127, 1991 https://doi.org/10.1038/351122a0
- Garrington, T.P., Johnson, G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 11: 211-218, 1999 https://doi.org/10.1016/S0955-0674(99)80028-3
- Seo, J.H., Lim, J.W., Kim, H., Kim, K.H. Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases. AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. lab Invest. 84: 49-62, 2004 https://doi.org/10.1038/labinvest.3700010
-
Lee, A.K., Sung, S.H., Kim, Y.C., Kim, S.G. Inhibition of lipopolysaccharide-inducible nitiric oxide synthase.TNF-
$\alpha$ and COX-2 expression by suchinone effects on${I}\kappa$ -${B}\alpha$ phosphorylation.C/EBP and AP-1 activation. British J. Phamacol. 139: 11-20, 2003 https://doi.org/10.1038/sj.bjp.0705231 - Meng, F., Lowell, C.A. Lipopolysaccharide(LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinase Hck, Fgr, and Lyn. J Exp Med. 185(9):1661, 1997 https://doi.org/10.1084/jem.185.9.1661