DOI QR코드

DOI QR Code

Photochemical Damage and Responses of Antioxidant Enzymes in Rice Leaves Induced to Light-Chilling

Light-chilling에 의해 유도된 벼 잎에서의 광합성 변화와 항산화 효소의 반응

  • Koo, Jeung-Suk (Department of Molecular Biology, Dong-eui University) ;
  • Choo, Yeon-Sik (Department of Biology, Kyungpook National University) ;
  • Lee, Chin-Bum (Department of Molecular Biology, Dong-eui University)
  • 구정숙 (동의대학교 분자생물학과) ;
  • 추연식 (경북대학교 생물학과) ;
  • 이진범 (동의대학교 분자생물학과)
  • Published : 2009.04.30

Abstract

We investigated photooxidation and responses of antioxidant enzymes involved in scavenging reactive oxygen species (ROS) after light-chilling ($4^{\circ}C$) for 2 days and post chilling ($25^{\circ}C$) in rice leaves. Chilling leaves indicated a 50% reduction in photosynthetic efficiency ($F_v/F_m$ ratio) and a 48% increase of $H_2O_2$, respectively, compared to the control group. In comparison with the control, activities of superoxide dismutase (SOD) and glutathione reductase (GR) increased at light-chilling and post-chilling. CuZn-SOD and Mn-SOD among SOD forms were detected in rice leaves, while Fe-SOD was not found. The increase of SOD and GR activity may serve as a basis for defense against chilling injury as it dismutase superoxide generated by light-chilling. Catalase (CAT) activity decreased during light-chilling, while activity of APX showed remarkable increase during light-chilling in rice leaves. Among CAT isoforms analyzed by 10% native PAGE, activities of isoform -2 and -3 were inhibited during light-chilling. From the elevated APX activity and decreased CAT activity, we suggest that these two enzymes show mutual supplementary relationships, indicating different tendency during light-chilling.

대부분의 열대 식물은 chilling에 민감하게 반응한다. 대표적 열대 식물인 벼 잎에 대한 light-chilling 처리와 이 후의 회복기(post-chilling) 동안 일어나는 반응들을 알아보았다. Chilling 시 벼 잎에서의 광합성 효율($F_v/F_m$)은 대조구보다 50% 감소하였고, 상대적으로 $H_2O_2$ 양은 48% 증가하였다. 항산화 효소들 중 SOD와 GR 활성은 chilling과 post-chilling 시 증가하였다. 특히 SOD isoforms의 경우 CuZn-SOD와 Mn-SOD 가 발현된 반면 Fe-SOD는 발현되지 않았다. CAT 활성은 chilling 시 감소하였으며, 반면에 APX는 크게 증가하였다. Chilling 시 CAT의 isoforms의 변화를 보면, CAT-2와 -3의 활성이 감소한 것과 대조적으로 post-chilling 시 이들 isoforms의 활성은 증가하였다. 이처럼 APX와 CAT 활성은 벼 잎이 chilling stress를 겪게 될 때 상반되는 변화를 보여주었다.

Keywords

References

  1. Allen, D. J. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Sci. 6, 36-42 https://doi.org/10.1016/S1360-1385(00)01808-2
  2. Aroca, R., J. J. Irigoyen, and M. Sanchez-Diaz. 2001. Photosynthetic characteristics and protective mechanisms against oxidative stress during chilling and subsequent recovery in two maize varieties differing in chilling sensitivity. Plant Sci. 161, 719-726 https://doi.org/10.1016/S0168-9452(01)00460-5
  3. Asada, K. 1992. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant 85, 235-241 https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  4. Asada, K. and M. Takahashi. 1987. Production and scavenging of activated oxygen in photosynthesis, pp. 227-287, In Kyle, D. J., C. B. Osmond, and C. J. Arntzen (eds.), Photoinhibition. Elsevier Science Publishers, Amsterdam, the Netherlands
  5. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  6. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 267-291
  7. Beyer, W. F. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161, 559-566 https://doi.org/10.1016/0003-2697(87)90489-1
  8. Casano, L. M., L. D. Comez, H. R. Lascano, C. A. Gonzalez, and V. S. Trippi. 1997. Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol. 38, 433-440 https://doi.org/10.1007/s00425-002-0852-z
  9. Creissen, G. P., A. Edwards, and P. M. Mullineaux. 1994. Glutathione reductase and ascorbate peroxidase, pp. 343-364, In Foyer, C. H. and P. M. Mullineaux (eds.), In Causes of Photooxidative Stress and Amelioration of defense systems in plants, Boca Raton, CRC Press
  10. Edwards, E. A., C. Enard, G. P. Creissen, and P. M. Mullineaux. 1994. Synthesis and properties of glutathione reductase in stressed peas. Planta 192, 137-143 https://doi.org/10.1007/BF00198704
  11. Fadzillah, N. M., V. Gill, R. P. Finch, and R. H. Burdon. 1996. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta 199, 552-556
  12. Feierbend, J., C. Schaan, and B. Hertwig. 1992. Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol. 100, 1554-1561 https://doi.org/10.1104/pp.100.3.1554
  13. Flowers, T. J. and A. R. Yeo. 1995. Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22, 875-884 https://doi.org/10.1071/PP9950875
  14. Genty, B., J. -M. Briantais, and N. R. Baker. 1989. The relationship between the quantum yield phtosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemica et Biophysica. 990, 87-92 https://doi.org/10.1016/S0304-4165(89)80016-9
  15. Guo, Z., W. Ou, S. Lu, and Q. Zhong. 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol. and Biochem. 44, 828-836 https://doi.org/10.1016/j.plaphy.2006.10.024
  16. Howarth, C. J. and H. J. Ougham. 1993. Gene expression under temperature stress. New Phytol. 125, 1-26 https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
  17. Huang, M. and Z. Guo. 2005. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 49, 81-84 https://doi.org/10.1007/s00000-005-1084-3
  18. Kim, J. -H., H. J. Hwang, H. -S. Park, C. B. Lee, K. Y. Myung, and C. H. Lee. 1997. Differences in the rate of dephosphorylation of thylakoid proteins during dark incubation after chilling in the light between two rice (Oryza sativa L.) varieties. Plant Sci. 128, 159-168 https://doi.org/10.1016/S0168-9452(97)00161-1
  19. Krause, G. H. 1994. Photoinhibition induced by low temperatures, pp. 331-342, In Baker, N. R. and J. R. Bowyer (eds.), Photoinhibition of Photosynthesis, Bios Scientific Pub. Oxford
  20. Kyle, D. J. 1987. The biochemical basis for photoinhibition of photosystem , pp. 197-225, In II Kyle D. J., C. B. Osmond and C. J. Arntzen (eds.), Photoinhibition. Elsevier Science, New York
  21. Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159, 75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
  22. Lee, D. H., Y. S. Kim, and C. B. Lee. 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. Plant Physiol. 158, 737-745 https://doi.org/10.1078/0176-1617-00174
  23. Lowry, O. H., N. J. Rosebrough, A. L. Fare, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  24. Marin, E., L. Nussaume, A. Quesada, M. Gonneau, B. Sotta, P. Hugueney, A. Frey, and A. Marion-Poll. 1996. Molecular identification of zeaxanthin epoxidase of Nicotianan plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA loucs of Arabidopsis thaliana. J. EMBO 15, 2331-2342
  25. McKersie, B. D. 1991. The role of oxygen free radicals in mediating freezing and dessication stress in plants, pp. 107-118, In Pell, E. J. and K. L. Steffen (eds.), Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville, MD
  26. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250 https://doi.org/10.1046/j.0016-8025.2001.00808.x
  27. Omran, R. G. 1980. Peroxide levels and activities of catalase, peroxide and indoleacetic acid oxidase during and after chilling cucumber seedling. Plant Physiol. 65, 407-408 https://doi.org/10.1104/pp.65.2.407
  28. Oquist, G., W. S. Chow, and J. M. Anderson. 1992. Photoinhibition of photosynthesis represents a mechanism for long-term regulation of photosysthesis. Planta 186, 450-460 https://doi.org/10.1007/BF00195327
  29. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oyza sativa L.). Plant Sci. 109, 105-113 https://doi.org/10.1016/0168-9452(95)04156-O
  30. Taylor, A. O., C. R. Slack, and H. G. McPherson. 1974. Plants under climatic stress Ⅵ chilling and light effect on photosynthetic enzymes of sorghum and maize. Plant Physiol. 54, 696-701 https://doi.org/10.1104/pp.54.5.696
  31. To, K. Y., D. F. Suen, and S. C. Chen. 1999. Molecular characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209, 66-76 https://doi.org/10.1007/s004250050607
  32. Van Camp, I. and M. Van Montagu 1997. The regulation and function of tobacco superoxide dismutases. Free Rad. Biol. Med. 23, 515-520 https://doi.org/10.1016/S0891-5849(97)00112-3