Parallel Finite Element Analysis System Based on Domain Decomposition Method Bridges

영역분할법에 기반을 둔 병렬 유한요소해석 시스템

  • Published : 2009.02.28

Abstract

This paper describes an application of domain decomposition method for parallel finite element analysis which is required to large scale 3D structural analysis. A parallel finite element method system which adopts a domain decomposition method is developed. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation method is introduced as a basic tool for element generation. Domain decomposition method using automatic mesh generation system holds great benefits for 3D analyses. Aa parallel numerical algorithm for the finite element analyses, domain decomposition method was combined with an iterative solver, i.e. the conjugate gradient(CG) method where a whole analysis domain is fictitiously divided into a number of subdomains without overlapping. Practical performance of the present system are demonstrated through several examples.

본 논문에서는 대규모 3차원 구조해석에 필요한 병렬 유한요소해석을 위한 영역분할법의 적용에 대해 묘사하였다. 영역분할법을 사용한 병렬 유한요소법 시스템을 개발하였다. 절점 생성시, 절점들간의 거리가 특정절점에서의 공간함수와 같아지면 절점이 생성되어 진다. 이 절점공간함수는 퍼지지식처리에 의해 조절되어 진다. 기본적인 요소생성은 데로우니 삼각화 기법을 적용하였다. 자동요소생성 시스템을 이용한 영역분할법은 3차원 해석에 큰 도움이 된다. 공간함수와 유사하게 절점들간의 유한요소해석을 위한 병렬 수치 알고리즘으로서 영역분할법을 전체의 해석영역을 완전히 여러 개의 작은 영역으로 겹치지 않게 나누는 공역구배인 반복적 솔버와 결합시켰다. 개발된 시스템의 효용성에 대한 성능을 몇 가지 예를 통해 제시하였다.

Keywords

References

  1. Asano, T. (1985) Practical use of bucketing techinques in computational geometry. Computational Geometry. North-Halland. pp.153-195
  2. Anglada, M.V., Garcia, N.P., Crosa, P.B. (1999) Directional Adaptive Surface Triangulation. Computer Aided Geometric Design. 16. pp.107-126 https://doi.org/10.1016/S0167-8396(98)00040-5
  3. Berzins, M. (1999) Mesh Quality: A Function of Geometry. Error Estimates or Both. Engineering with Computers. 15. PP. 236-247 https://doi.org/10.1007/s003660050019
  4. Chio, J.B., Park, Y.J., Ko, H.O., Chang, Y.S., Kim, Y.J., Lee, J.S. (2006) Parallel Process System and Its Application to Flat Display Modules Impact Analysis. Proceedings of the 7th World Congress on Computational Mechanics. pp.16-22
  5. Nguyen, D.T., Al-Nasra, M. (1981) An Algorithm for Domain Decomposition in Finite Element Analysis. Computer and Structures. 39(3), pp.277-289 https://doi.org/10.1016/0045-7949(91)90026-I
  6. Lee, J.S. (1995) Automated CAE System for ThreeDimensional Complex Geometry. Doctoral Thesis. The University of Tokyo
  7. Lee, J.S. (2002) Development of the Fuzzy-Based System for Stress Intensity Factor Analysis. Int. J. of Fuzzy Logic and Intelligent Systems. 12(3). pp.255-260 https://doi.org/10.5391/JKIIS.2002.12.3.255
  8. Lee, J.S. (2004) Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing. Int. J. of Fuzzy Logic and Intelligent Systems. 4(2). pp.193-198 https://doi.org/10.5391/IJFIS.2004.4.2.193
  9. Shioya.R., Yagawa. G. (2003) Finite Elements on massively Parallel Computer with Domain Decomposition. Computing Systems in Engineering 4(4). pp.495-503 https://doi.org/10.1016/0956-0521(93)90017-Q
  10. Taniguchi, T., Ohta, C. (1991) Delaunay-Based Grid Generation for 3D Body with Complex Boundary Geometry. Grid Generation Conference. pp.55-60
  11. Watson, D.F. (1991) Computing the N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes. The Computer Journal. 24(2). pp.167-172 https://doi.org/10.1093/comjnl/24.2.167
  12. Zadeh, L.A. (1983) Fuzzy Algorithms. Information and Control. Cybernetics. SMC-3. 12. pp.28-44