Abstract
This paper proposes a new method of weighted template matching fur machine-printed numeral recognition. The proposed weighted template matching, which emphasizes the feature of a pattern using adaptive Hamming distance on local feature areas, improves the recognition rate while template matching processes an input image as one global feature. The experiment compares confusion matrices of the template matching, error back propagation neural network classifier, and the proposed weighted template matching respectively. The result shows that the proposed method improves fairly the recognition rate of the machine-printed numerals.
본 논문에서는 인쇄체 숫자를 인식하기 위해 가중 원형 정합(weighted template matching) 방법을 제안한다. 원형 정합은 입력 영상 전체를 하나의 전역적인 특징으로 처리하는 데 반해, 제안된 가중 원형 정합은 패턴의 특징이 나타나는 국부적인 영역에 해밍 거리(Hamming distance)의 가중치를 두어 패턴 특징을 강조하여 숫자 패턴의 인식률을 높인다. 실험에서는 기존의 원형 정합을 사용했을 때, 오류 역전파 신경망을 사용했을 때와 가중 원형 정합을 사용했을 때의 혼돈 행렬(confusion matrix)을 각각 서로 비교한다. 실험 결과는 본 논문에서 제안한 방법에 의해 인쇄체 숫자의 인식률이 크게 향상된 것을 보인다.