DOI QR코드

DOI QR Code

A Study on the Microwave Electric-Field Focusing Waveguide Systems for Driving Plasma Visible Light

플라즈마 가시광 구동을 위한 초고주파 전계 집속형 도파관 시스템에 관한 연구

  • Jeon, Hoo-Dong (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Park, Eui-Joon (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 전후동 (금오공과대학교 전자공학부) ;
  • 박의준 (금오공과대학교 전자공학부)
  • Published : 2009.03.31

Abstract

In this study, a waveguide system for focusing the electric field is presented to emit the microwave-driven plasma visible light. This system consists of a magnetron for the microwave power supply, the waveguide section for power propagation, and the mesh-type cavity reactor. The quartz bulb containing a dose of sulfur powder and buffer gas Ar is located in the reactor, and forced by the strongly concentrated electric field for generating and exciting the sulfur plasma. That is, the conductor tips are loaded on each inner wall of the waveguide and the reactor, and then the plasma bulb is positioned between the tips, hence focusing the strong electric field on the bulb. Furthermore the waveguide section is designed for minimizing the degradations of matching characteristics according to the variations of the electrical conductivities of plasma at the transitory phase for plasma generation, hence providing the stable operation. Finally, the 2.45 GHz aluminum waveguide system is constructed, and then experiments for emitting the visible light are performed by using 400 W-class magnetron, showing the validity of designed system.

본 연구에서는 초고주파를 사용하여 플라즈마 가시광을 발생시키기 위한 전계 집속형 도파관 시스템을 제안하였다. 이 시스템은 초고주파 전력 공급기인 마그네트론, 전력 전송을 위한 도파관부 및 메쉬형 공동으로 이루어진 반응기로 구성된다. 소량의 황 분말과 버퍼 가스인 Ar이 봉입된 석영 벌브를 반응기 내에 위치시키고, 강한 전계를 집속시킴으로써 황 플라즈마가 생성 및 여기되도록 하였다. 즉, 도파관과 반응기의 내벽에 각각 도체팁을 장착시키고, 그 사이에 플라즈마 벌브를 위치시킴으로써 벌브에 강한 전계가 집중되도록 하였다. 또한 플라즈마 생성 과도기에서, 플라즈마의 전기적 도전성 변화에 따른 정합 특성의 열화를 최소화할 수 있는 도파관부를 설계하여 안정적으로 동작되도록 하였다. 최종적으로 2.45 GHz 알루미늄 도파관 시스템을 제작하고, 400W급 마그네트론을 사용한 가시광 방출 실험을 통해 설계된 시스템의 타당성을 검증하였다.

Keywords

References

  1. J. M. Osepchuk, "Microwave power applications", IEEE Trans. Microwave Theory Tech., vol. 50, no. 3, pp. 975-985, Mar. 2002 https://doi.org/10.1109/22.989980
  2. C. M. Ferreira, M. Moisan, Microwave Discharges: Fundamentals and Applications, New York: Plenum, 1993
  3. S. R. Wylie, A. Shamma, and J. Lucas, "Microwave plasma system for material processing", IEEE Trans. Plasma Science, vol. 33, no. 2, pp. 340-341, Apr. 2005 https://doi.org/10.1109/TPS.2005.845005
  4. N. K. Podder, E. D. Mezonlin, and J. A. Johnson, "A microwave generated plasma in a tunable resonant cavity for studies of turbulence in weakly ionized gases", IEEE Trans. Plasma Science, vol. 29, no. 6, pp. 965-969, Dec. 2001 https://doi.org/10.1109/27.974986
  5. J. E. Simpson, M. Kamarchi, B. Turner, and M. Ury, "Microwave discharge device with TMnmo cavity", U.S. Patent 5 361 274, Nov. 1994
  6. A. I. Shamma, I. Pandithas, and J. Lucas, "Low pressure microwave plasma UV lamp for water purification and ozone production", J. Phys D: Appl. Phys., vol. 34, pp. 2775-2781, Jul. 2001 https://doi.org/10.1088/0022-3727/34/18/310
  7. S. Offermanns, "Resonance characteristics of a cavity-operated electrodeless high-pressure microwave discharge system", IEEE Trans. Microwave Theory Tech., vol. 38, no. 7, pp. 904-911, Jul. 1990 https://doi.org/10.1109/22.55783
  8. M. Heintel, M. Neiger, and R. Scholl, "Investigation of the radiation mechanism of microwave excited cluster lamps", Contrib. Plasma Physics, vol. 38, no. 3, pp. 419-433, Mar. 1998 https://doi.org/10.1002/ctpp.2150380304
  9. D. A. Peterson, L. A. Schlie, "Stable pure sulfur discharges and associated spectra", J. Chem. Phys. (USA), vol. 73, no. 4, pp. 1551-1566, Apr. 1980 https://doi.org/10.1063/1.440335
  10. R. E. Collin, Field Theory of Guided Waves, IEEE Press, 1991
  11. D. M. Pozar, Microwave Engineering, John Wiley & Sons, 2005
  12. C. W. Johnston et al., "A self-consistent LTE model of a microwave-driven, high-pressure sulfur lamp", J. Phys. D. Appl. Phys., vol. 35, pp. 342-351, 2002 https://doi.org/10.1088/0022-3727/35/4/309
  13. M. Stambouli, K. Charrada, and J. Damelincourt, "Thermalization of the high pressure mercury lamp positive column during the warm-up phase", IEEE Trans. Plasma Science, vol. 23, no. 2, pp. 138-144, Apr. 1995 https://doi.org/10.1109/27.376578
  14. C. W. Johnston et al., "Operational trends in the temperature of a high-pressure microwave powered sulfur lamp", J. Phys. D. Appl. Phys., vol. 35, pp. 2578-2585, 2002 https://doi.org/10.1088/0022-3727/35/20/317
  15. K. Minami et al., "Very slowly decaying afterglow plasma in cryogenic helium gas", IEEE Trans. Plasma Science, vol. 31, no. 3, pp. 429-437, Jun. 2003 https://doi.org/10.1109/TPS.2003.811641
  16. LG Electronics Inc., "Waveguide system for electrodeless lighting device", U.S. Patent 7 081 707, Jul. 2006
  17. M.Shinagawa, T. Nagatsuma, "An automated electro- optic probing system for ultra-high speed IC's", IEEE Trans. Instrum. Meas., vol. 43, no. 6, pp. 843-847, Jun. 1994 https://doi.org/10.1109/19.368087