Modeling Heavy-tailed Behavior of 802.11b Wireless LAN Traffic

무선 랜 802.11b 트래픽의 두꺼운 꼬리분포 모델링

  • Received : 2009.05.19
  • Accepted : 2006.06.16
  • Published : 2009.06.30

Abstract

To effectively exploit the underlying network bandwidth while maximizing user perceivable QoS, mandatory to make proper estimation on packet loss and queuing delay of the underling network. This issue is further emphasized in wireless network environment where network bandwidth is scarce resource. In this work, we focus our effort on developing performance model for wireless network. We collect packet trace from actually wireless network environment. We find that packet count process and bandwidth process in wireless environment exhibits long range property. We extract key performance parameters of the underlying network traffic. We develop an analytical model for buffer overflow probability and waiting time. We obtain the tail probability of the queueing system using Fractional Brown Motion (FBM). We represent average queuing delay from queue length model. Through our study based upon empirical data, it is found that our performance model well represent the physical characteristics of the IEEE 802.11b network traffic.

사용자가 느끼는 QoS를 최대화하면서 네트워크 대역폭의 특성을 효율적으로 활용하기 위해서는 네트워크의 패킷 손실과 대기행렬의 지연 시간을 구체적으로 예측이 필요하다. 네트워크의 자원이 충분치 않은 무선 네트워크 환경의 경우 예측은 특히 중요한 문제로 부각된다. 본 연구는 무선 네트워크의 성능 모델을 개발하는 것을 목표로 하고 있다. 실험을 위해서 실제 운영 중인 무선 네트워크 환경에서 패킷 흐름 자료를 수집하였다. 무선 환경에서의 패킷 개수 공정과 대역폭 공정은 장기 기억 특성을 갖고 있는 것으로 나타났다. 실험을 통해서 네트워크 트래픽의 주요 성능 변수들을 추출해 냈고, 대기 시간과 버퍼 오버플로우 확률에 대한 분석적 모델을 개발하였다. 프랙탈 브라운 운동 (FBM)을 이용한 대기 행렬의 꼬리 확률을 얻었고, 대기행렬의 길이 모델을 통해서 평균대기 지연을 표현하였다. 실측 데이터를 활용하여 개발한 성능 모델이 IEEE 802.11b 네트워크 트래픽의 물리적 특성을 잘 표현하고 있음을 알 수가 있다

Keywords

References

  1. Beran, J., "Statistics for Long-Memory Processes," Vol. 39(1). 1994: Jeffrey Glosup Technometrics. 105-106.
  2. Frisch, U., "Turbulence the Legacy of A.N. Kolmogorov," Cambridge, 1995.
  3. Collins, J.J. and C.J.D. Luca, "Upright, correlated random walks:a statistical-biomechanics approach to the human postural control system," Chaos AnInterdisciplinary Journal of Nonlinear Science 1994. 5(1): p. 57:63.
  4. Willinger, W., M.S. Taqqu, and V. Teverovsky, "Estimators for long-range dependence: an empirical study, fractals," In Fractal Geometry and Analysis, World Scientific 1996. 3: p. 785-798.
  5. D.Tang and M.Baker. "Analysis of a Metropolitan-Area Wireless Network," in In Proceedings of ACM MobiCom 00. August 2000.
  6. Teymori, S. and W. Zhuang. "Queue analysis and Multiplexing of Heavy-tailed Traffic in Wireless Packet Data Networks," Mobile Networks and Applications, Springer, 2007. Vol. 12, No. 1, p. 31-41. https://doi.org/10.1007/s11036-006-0004-y
  7. Qin Yu, T. Y.M., and F.W. Wang. "Hurst parameter estimation and characteristics analysis of aggregate wireless LAN traffic," Communications, Circuits and Systems, 2005. Proceedings. 2005 International Conference on, 2005. Vol. 1.
  8. Yu Cheng and W.Z. LeiWang, "Calculation of Loss Probability in a Finite Size Partitioned Buffer for Quantitative Assured Service," IEEE Transactions on Communications 2007 55:. 2007. p. 1757 - 1771. https://doi.org/10.1109/TCOMM.2007.904394
  9. Zhifei, Z. and Q. Zhengding. "A novel approach for real-time equivalent bandwidth estimation," Communication Technology Proceedings, 2000. WCC-ICCT 2000. International Conference on. 2000. Vol. 2
  10. Yunhua;, R., Z. Xuecheng;, and L. Weizhong. "Resource allocation for self-similar queue system," In Parallel and Distributed Computing, Applications and Technologies, 2003. PDCATapos;2003. 2003. p. 372-374
  11. Yunhua;, R., X. Zhongyang;, and L. Xu. "Performance analysis of queue system with self-similar traffic input," ICommunication Technology Proceedings, 2003. ICCT 2003. International Conference on. 2003. Vol. 2.
  12. Mayor, G. and J. Silvester. "Time scale analysis of an ATM queuing system with long-range dependent traffic," In Proceedings of the INFOCOM '97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the information Revolution (April 09-11) 1997. INFOCOM. IEEE Computer Society, Washington, DC, 205. Vol.1
  13. Norros, I., "A storage model with self-similar input, queuing system," queuing Systems, 1995. vol:16:p. 387 396. https://doi.org/10.1007/BF01158964
  14. Stallings, W., "High-Speed Networks and Internets: Performance and Quality of Service," Second Edition ed. 2002, New Jersey: Prentice Hall Upper Saddle River.
  15. Mandelbrot, B. and J.R. Wallis, "Computer experiments with fractional Gaussian noises-Part 1: Averages and variances," Water Resources Research, 1969. 5: p. 228-267. https://doi.org/10.1029/WR005i001p00228
  16. Matthews, J., "Computer Networking: Internet Protocols in Action," 2005: WILEY Johon Wiley & Sons, Inc.
  17. Dashdorj.Y and Youjip.W, "Modeling and analysis of Wireless LAN," Journal of Mongolian University of Science and Technology, 2007. 1/91 UB-2007: p. 15-25.
  18. K. Park,. and Willinger, W, "Self-Similar Network Traffic and Performance Evaluation," 2000, A Wiley-Interscience Publication.
  19. Willinger, W., M.S. Taqqu, and A. Erramilli, "A bibliographical guide to self-similar traffic and performance modeling for modern high speed networks," In Theory and Applications. 1996: Oxford University Press. Vol. 4 p. 339-366.