References
- Leedy, K.D. and Stubbins, J.F., 2001, 'Copper Alloy-Stainless Steel Bonded Laminates for Fusion Reactor Application : Tensile strength and Microstructure,' Mat. Sci. Eng., A 297, pp.10-18 https://doi.org/10.1016/S0921-5093(00)01273-9
- Winter, A.N., Corff, B.A., Reimanis, I.E. and Rabin, B.H., 2000, 'Fabrication of graded Nickel-Alumina Composites with a Thermal-Behavior-Matching Process,' J. Am. Ceramic. Soc., Vol. 9, pp. 2147-2154 https://doi.org/10.1111/j.1151-2916.2000.tb01528.x
- Anderson, T.L., 1995, 'Fracture Mechanics : Fundamentals and Applications,' 2nd ed., CRC Press, Inc
- Barenblatt, G.I., 1962, 'Mathematical Theory of Equilibrium Crack in Brittle Fracture,' Advance in applied mechanics, Vol. 7, pp. 55-129 https://doi.org/10.1016/S0065-2156(08)70121-2
- Dugdale, D.S., 1960, 'Yielding of Steel Sheets Containing Slits,' J. Mech. Phys. Solids, Vol. 8, pp. 100-108 https://doi.org/10.1016/0022-5096(60)90013-2
- Xu, X.-P. and Needleman, A., 1994, 'Numerical Simulations of Fast Crack Growth in Brittle solids,' J. Mech. Phys. Solids, Vol. 42, No. 9, pp. 1397-1434 https://doi.org/10.1016/0022-5096(94)90003-5
- Siegmuns, T, and Needleman, A., 1997, 'A Numerical Study of Dynamic Crack Growth in Elastic-Viscoplastic Solids,' Int. J. Solids Struc., Vol.34, pp.769-787 https://doi.org/10.1016/S0020-7683(96)00062-5
- Needleman, A., 'Numerical Modeling of Crack Growth Under Dynamic Loading Conditions,' Comp. Mech., Vol. 19, pp. 463-469 https://doi.org/10.1007/s004660050194
- Camacho, G.T. and Ortiz, M., 1996, 'Computational Modeling of Impact Damage in Brittle Materials,' Int. J. Solids Struc., Vol. 33, pp.2899-2938 https://doi.org/10.1016/0020-7683(95)00255-3
- Geubelle, P.H., 1995, 'Finite Deformation Effects in Homogeneous and Interfacial Fracture,' Int. J. Solids Struc., Vol. 36, pp. 1003-1016 https://doi.org/10.1016/0020-7683(94)00174-U
- Chandra, N., Li, H., shet, C. and Ghonem, H., 2002, 'Some Issues in the Application of Cohesive Zone Models for Metal-Ceramic Interfaces,' Int. J. Solids Struc., Vol. 39, pp. 2827-2855 https://doi.org/10.1016/S0020-7683(02)00149-X
- Siegmund, T. and Brocks, W., 2000, 'A Numerical Study on Correlation Between the Work of Separation and the Dissipation rate in Ductile Fracture,' Eng. Frac. Mech., Vol. 67, pp. 137-154 https://doi.org/10.1016/S0013-7944(00)00054-0
- Gurson, A. L., 1977, 'Continuum Theory of Ductile Rupture by Void Nucleation and Growth : Part 1-Yield Criteria and Flow Rules for Porous Media,' J. Eng. Mat. Tech, Transac. ASME Vol. 99, Ser H (1), pp. 2-15 https://doi.org/10.1115/1.3443401
- Kim, K.T. and Cho, Y.H., 1992, 'A Temparature and Strain Rate Dependent Strain Hardening Law,' Int. J. Pres. Ves. & Piping, Vol. 49, pp. 327-337 https://doi.org/10.1016/0308-0161(92)90120-5
- Paulino, G.H. and Zhang, Z., 2005, 'Cohesive Zone Modeling of Dynamic Crack Propagation in Functionally Graded Materials,' 5th GRACM Int. Congress on Comp. Mech., Limassol, 29 June-1 July, 2005
- ASTM E 399-83, 1997, 'Standard Test Method for Fracture Toughness of Metallic Materials,' Americal Society for Testing and Materials
- Wang, J.C., 1984, 'Young's Modulus of Porous Materials; Part 1-Theoretical Derivation of Modulus–Porosity Correlation,' J. Mat. Sci., Vol. 19, pp. 801-808 https://doi.org/10.1007/BF00540451
- Carnavas, P.C. and Page, N.W., 1998, 'Elastic Properties of Compacted Metal Powders,' J. Mat. Sci., Vol. 33, pp. 4647-4655 https://doi.org/10.1023/A:1004445527430
- Li, W., Siegmund, T., 2002, 'An Analysis of Crack Growth on Thin Sheet met via a Cohesive Zone Model,' Eng. Frac. Mech., Vol. 69, Issue 18, pp. 2073-2093 https://doi.org/10.1016/S0013-7944(02)00013-9