Oxidation Process of Epitaxial Ni(111) Thin Films Deposited on GaN/Sapphire(0001) Substrates

GaN/Sapphire(0001) 기판위에 증착한 epitaxial Ni(111) 박막의 산화 과정

  • Seo, S.H. (Korea Electrotechnology Research Institute) ;
  • Kang, Hyon-Chol (Department of Advanced Materials Engineering, Chosun University)
  • Published : 2009.11.30

Abstract

This paper reports the oxidation mechanism of epitaxial Ni thin films grown on GaN/sapphire(0001) substrates, investigated by real-time x-ray diffraction and scanning electron microscopy. At the initial stage of oxidation process, a thin NiO layer with a thickness of ${\sim}50\;{\AA}$ was formed on top of the Ni films. The growth of such NiO layer was saturated and then served as a passive oxide layer for the further oxidation process. For the second oxidation stage, host Ni atoms diffused out to the surfaces of initially formed NiO layer through the defects running vertically to form NiO grains, while the sites that were occupied by host Ni, became voids. The crystallographic properties of resultant NiO films, such as grain size and mosaic distribution, rely highly on the oxidation temperatures.

Keywords

References

  1. T. Isobe, R. A. Weeks and R. A. Zuhr : Solid State Communications, 105 (1998) 469 https://doi.org/10.1016/S0038-1098(97)10156-9
  2. H. Tokoro, S, Fujii, S, Muto, and S, Nasu : J. Appl. Phys. 99 (2006) 08Q512 https://doi.org/10.1063/1.2172195
  3. I. Wilke, Y. Oppliger, W. Herrmann and F. K. Kneubuhl : Appl. Phys. A 58 (1994) 329 https://doi.org/10.1007/BF00323606
  4. I. Kazeminezhad and W. Schwarzacher : Journal of Solid State Electrochemistry 8 (2004) 187 https://doi.org/10.1007/s10008-003-0422-8
  5. M. Chen, P. C. Searson, and C. L. Chien : J. Appl. Phys. 93 (2003) 8253 https://doi.org/10.1063/1.1556136
  6. K. Benkirane, R. Elkabil, M. Lassri, M. Abid, H. Lassri, A. Hamdoun and R. Krishnan : Journal of Alloys and Compounds 388 (2005) 186 https://doi.org/10.1016/j.jallcom.2004.07.044
  7. P. H. Holloway and J. B. Hudson : Surface Sci. 43 (1974) 123 https://doi.org/10.1016/0039-6028(74)90223-4
  8. R. S. Saiki, A. P. Kaduwela, J. Osterwalder, and C. S. Fadley : Phys. Rev. B 40 (1989) 1586 https://doi.org/10.1103/PhysRevB.40.1586
  9. E. Kopatzki and R. J. Behm : Phys. Rev. Lett. 74 (1995) 1399 https://doi.org/10.1103/PhysRevLett.74.1399
  10. S. H. Kim, J. H. Chung, Y. T. Kim, J. Han, S. P. Yoon, S.-W. Nam, T.-H. Lim and H.-I. Lee : Catalysis Today 146 (2009) 96 https://doi.org/10.1016/j.cattod.2009.01.042
  11. Y. Zhang, X. Peng, and F. Wang : Materials Lett. 58 (2004) 1134 https://doi.org/10.1016/j.matlet.2003.09.006
  12. C. Scheck, P. Evans, R. Schad, G. Zangari, J. R. Williams, and T. F. Issacs-Smith : J. Phys. D 14 (2002) 12329 https://doi.org/10.1088/0953-8984/14/47/308
  13. H. C. Kang, S. H. Seo, H. W. Jang, D. H. Kim, and D. Y. Noh : Appl. Phys. Lett. 83 (2003) 2139 https://doi.org/10.1063/1.1610248
  14. L. G. Parratt : Phys. Rev. 95 (1954) 359 https://doi.org/10.1103/PhysRev.95.359
  15. S. K. Sinha : Phys. Rev. B 38 (1988) 2297 https://doi.org/10.1103/PhysRevB.38.2297
  16. H. C. Kang, S. H. Seo, J. W. Kim, and D. Y. Noh : Appl. Phys. Lett. 80 (2002) 1364 https://doi.org/10.1063/1.1453486
  17. N. Cabrera and N. F. Mott : Rep. Prog. Phys. 12 (1949) 163 https://doi.org/10.1088/0034-4885/12/1/308
  18. J.-K. Ho. C.-S. Jong, C. C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai : J. Appl. Phys. 86 (1999) 4491 https://doi.org/10.1063/1.371392
  19. B. E. Warren, X-ray Diffraction (Addison-Wesley Pub. Co, 1969) p. 253