유채대의 이단 고온 처리에 의한 알콜 발효용 당화물 생산

Two-step High Temperature Pretreatment Process for Bioethanol Production from Rape Stems

  • 한재건 (강원대학교 BT특성화 학부대학) ;
  • 오성호 (강원대학교 BT특성화 학부대학) ;
  • 정명훈 (강원대학교 BT특성화 학부대학) ;
  • 김승섭 (강원대학교 BT특성화 학부대학) ;
  • 서현범 (충주대학교 바이오산업학과) ;
  • 정경환 (충주대학교 바이오산업학과) ;
  • 장영석 (농촌진흥청 작물과학원 목포시험장) ;
  • 김일철 (전남대학교 생물학과) ;
  • 이현용 (강원대학교 BT특성화 학부대학)
  • Han, Jae-Gun (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Oh, Sung-Ho (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Jeong, Myoung-Hoon (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Kim, Seung-Seop (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Seo, Hyeon-Beom (Department of Biotechnology, Chungju National University) ;
  • Jeong, Kyung-Hwan (Department of Biotechnology, Chungju National University) ;
  • Jang, Young-Seok (Mokpo Experiment Station, National Institute of Crop Science, RDA) ;
  • Kim, Il-Cheol (Department of Biology, Chonnam National University) ;
  • Lee, Hyeon-Yong (College of Bioscience & Biotechnology, Kangwon National University)
  • 발행 : 2009.10.29

초록

우리 연구팀은, 농산부산물인 유채대의 알콜 발효용 당화물 생산 가능성을 연구하였다. 이를 위해 농산부산물인 유채대를 연속적으로 5 mL/min의 속도로 산을 이용하지 않고 증류수만을 이용해 이단 고온 처리 ($200^{\circ}C$ and 15 Mpa, $375^{\circ}C$ and 23 Mpa)하였다. 본 전처리 공정을 통한 가수수분해물의 당화물 생성은 최종적으로 자일로스와 글루코스의 경우 25.6 g/L, 5.5 g/L가 생성되었다. 이는 유채대에 존재하는 글루코스와 자일로스의 초기 양 대비 각각 18%와 59%의 전환 수율을 나타낸다. 또한 이 공정은 타 공정들에 비하여 대표발효 저해 산물인 HMF의 생성량이 0.2 ppm으로 극히 낮은 수치를 보였으며, 가수분해물의 에탄올 생산시, 글루코스의 발효를 통한 에탄올 생성 전환수율이 90% 이상으로 높은 생성율을 보였다. 따라서 본 공정을 통해 다른 농산부산물이나 해조류 전체에 응용된다면, 고 수율의 에탄올 생산용 당화물을 생산할 것으로 예상한다.

Two-step pretreatment process was investigated to efficiently hydrolyzed rape stems for obtaining fermentable sugars. The process was consisted of two consecutive steps as $200^{\circ}C$ and 15 MPa and $374^{\circ}C$ and 24 MPa with the flow rate of 5 mL/min. Under this condition, 5.5 (g/L) of glucose and 25.6 (g/L) of xylose were obtained from rape stems, showing 18% of glucose yield based on 25% cellulose in the rape stems. It was also found that this process could generate less amounts of toxic residues, such as HMF (Hydroxy- Methyl-Furfural) and other fulfural components during hydrolysis process. It could reaction maintain relatively high ethanol production yield as 90% of theoretical conversion yield from glucose. Therefore, this pretreatment process could be applied to hydrolyze other cellulosic and marine resources such as woods, stem and algae for bioethanol production.

키워드

참고문헌

  1. Fangrui, M. and M. A. Hanna (1999) Biodiesel production:a review. Bioresour Technol. 70: 1-15 https://doi.org/10.1016/S0960-8524(99)00025-5
  2. Sandburg, T. and K. Bermont (2005) Bioenergy- Realizing the Potential. p. 113. Swedish Energy Agency press, Eskilstuna, Sweden
  3. Wyman, C. E. (1994) Alternative fulels from biomass and their impact on carbon dioxide accumulation. Appl. Biochem. Bioethanol. 45-46: 897-915 https://doi.org/10.1007/BF02941858
  4. Beguin, P. and J. P. Aubert (1994) The biological degradation of cellulose. FEMS microbiol. Rev. 13: 25-58 https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  5. Saha, B. C. (2003) Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291 https://doi.org/10.1007/s10295-003-0049-x
  6. Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287 https://doi.org/10.1016/0144-8617(95)00020-8
  7. Faaij, A. P. C. (2006) Bio-energy in Europe:Changing technology choices. Energy Policy. 34: 322-342 https://doi.org/10.1016/j.enpol.2004.03.026
  8. Gray, K. A. Zhao, L., and Emptage, M. (2006) Bioethanol. Curr. Opin. Chem. Biol. 10: 1-6 https://doi.org/10.1016/j.cbpa.2006.01.015
  9. Miyafuji, H. and S. Saka (2007) Bioethanol production fom lignocellulosics using supercritical water. ACS sym. Ser. 954: 422-433
  10. Ferner, R. A. and J. O. Lephardr (1981) Examination of the themal decomposition of kraft pine lignin by fourier transform infrared evolved gas analysis. J. Agric. Food Chem. 29: 29-38 https://doi.org/10.1021/jf00106a042
  11. Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, and G. Zacchi (1999) The generation of fermentation inhibitor during dilute and hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159 https://doi.org/10.1016/S0141-0229(98)00101-X
  12. Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresour Technol. 99: 6505-6511 https://doi.org/10.1016/j.biortech.2007.11.032
  13. Sun, J. X., F. Xu, X. F. Sun, B. Xiao, and R. C. Sun (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stabil. 88: 521-531 https://doi.org/10.1016/j.polymdegradstab.2004.12.013
  14. Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour Technol. 100: 1803-1808 https://doi.org/10.1016/j.biortech.2008.10.001
  15. Chaogang, L. and C. E. Wyman (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol. 96: 1978-1985 https://doi.org/10.1016/j.biortech.2005.01.012
  16. Sassner, P., C. G. Martensson, M. Galbe, and G. Zacchi (2008) Steam pretreatment of H2SO4 impregmated Salix for the production of bioethanol. Bioresour Technol. 99: 137-145 https://doi.org/10.1016/j.biortech.2006.11.039
  17. Araque, E., C. Parra, J. Freer, D. Contreras, J. Rodriguez, R. Mendonc, and J. Benza (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radita D. Don to ethanol. Enzyme Microb. Technol. 43: 157-162 https://doi.org/10.1016/j.enzmictec.2007.11.011
  18. Kim, C. H., M. C. Kwon, S. A. Qadir, B. Hwang, J. H. Nam, and H. Y. Lee (2007) Toxicity reduction and improvement of anticancer activities from Rhodiola schalinensis A. Bor by ultra high pressure extracts process. Korean J. Medicinal Crop Sci. 6: 411-416
  19. Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populus alba $\times$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46
  20. Silverstein, R. A., Y. Chen, R. R. Sharma-Shivappa, M. D. Boyette, and J. Osborne (2007) A comparison of chemical pretreatment methods for improving saccharofication of cotton stalks. Bioresour Technol. 98: 3000-3011 https://doi.org/10.1016/j.biortech.2006.10.022