Bio-degradation of Phenol in Wastewater by Enzyme-loaded Membrane Reactor: Numerical Approach

  • Barbieri, Giuseppe (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria) ;
  • Choi, Seung-Hak (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria) ;
  • Scura, Francesco (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria) ;
  • Mazzei, Rosalinda (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria) ;
  • Giorno, Lidietta (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria) ;
  • Drioli, Enrico (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria) ;
  • Kim, Jeong-Hoon (Environment & Resources Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT))
  • 발행 : 2009.03.30

초록

A mathematical model was written for simulating the removal of phenol from wastewater in enzyme-loaded membrane reactor (EMR). The numerical simulation program was developed so as to predict the degradation of phenol through an EMR. Numerical model proves to be effective in searching for optimal operating conditions and creating an optimal microenvironment for the biocatalyst in order to optimize productivity. In this study, several dimensionless parameters such as Thiele Modulus (${\phi}^2$, dimensionless Michaelis-Menten constant ($\xi$), Peclet number (Pe) were introduced to simplify their effects on system efficiency. In particular, the study of phenol conversion at different feed compositions shows that low phenol concentrations and high Thiele Modulus values lead to higher reactant degradation.

키워드

참고문헌

  1. M. Xiao, J. Zhou, Y. Tan, A. Zhang, Y. Xia, and L. Ji, 'Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber', Desalination, 195, 281 (2006) https://doi.org/10.1016/j.desal.2005.12.006
  2. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capala, and I. Ostrowska, 'Removal of phenol from wastewater by different separation techniques', Desalination, 163, 287 (2004) https://doi.org/10.1016/S0011-9164(04)90202-0
  3. P. Kumaran and Y. L. Paruchuri, 'Kinetics of phenol biotransformation', Wat. Res., 31, 11 (1997) https://doi.org/10.1016/S0043-1354(99)80001-3
  4. M. Carmona, A. D. Lucas, J. L. Valverde, B. Velasco, and J. F. Rodriguez, 'Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420', Chem. Eng. J., 117, 155 (2006) https://doi.org/10.1016/j.cej.2005.12.013
  5. S. Rengaraj, S.-H. Moon, R. Sivabalan, B. Arabindoo, and V. Murugesan, 'Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat', J. Hazard. Mater., B89, 185 (2002) https://doi.org/10.1016/S0304-3894(01)00308-9
  6. A. Idris and K. Saed, 'Degradation of phenol in wastewater using anolyte produced from electrochemical generation of brine solution', Global Nest: the Int. J., 4, 139 (2002)
  7. Y. M. Awad and N. S. Abuzaid, 'The influence of residence time on the anode oxidation of pheno', Sep. Purif. Technol., 18, 227 (2000) https://doi.org/10.1016/S1383-5866(99)00087-8
  8. A. Sakurai, M. Masuda, and M. Sakakibara, 'Effect of surfactants on phenol removal by the method of polymerization and precipitation catalysed by Co Coprinus cinereus peroxidase', J. Chem. Technol. Biotechnol., 78, 952 (2003) https://doi.org/10.1002/jctb.891
  9. E. Miland, M. R. Smyth, and C. O. Fagain, 'Phenol removal by modified peroxidases', J. Chem. Tech. Biotechnol., 67, 227 (1996) https://doi.org/10.1002/(SICI)1097-4660(199611)67:3<227::AID-JCTB563>3.0.CO;2-J
  10. A. Bodalo, J. L. Gomez, E. Gomez, A. M. Hidalgo, M. Gomez, and A. M. Yelo, 'Removal of 4-chlorophenol by soybean peroxidase and hydrogen peroxide in a discontinuous tank reactor', Desalination, 195, 51 (2006) https://doi.org/10.1016/j.desal.2005.11.017
  11. A. B.-David, S. Bason, J. Jopp, Y. Oren, and V. Freger, 'Partitioning of organic solutes between water and polyimide layer of RO and NF membranes: Correlation to rejection', J. Membr. Sci., 281, 480 (2006) https://doi.org/10.1016/j.memsci.2006.04.017
  12. A. Bodalo, J. L. Gomez, M. Gomez, G. Leon, A. M. Hidalgo, and M. A. Ruiz, 'Phenol removal from water by hybrid processes: study of the membrane process step', Desalination, 223, 323 (2008) https://doi.org/10.1016/j.desal.2007.01.219
  13. A. Aidan A. Hamad, M. Fayed, and M. Mehrvar, 'Experimental investigation of phenolic wastewater treatment using combined activated carbon and UV processes', Clean Techn. Environ. Policy, 7, 177 (2005) https://doi.org/10.1007/s10098-005-0280-4
  14. B. S.-Sobecka, M. Tomaszewska, and A. W. Morawski, 'Removal of micropollutants from water by ozonation/biofiltration process', Desalination, 182, 151 (2005) https://doi.org/10.1016/j.desal.2005.03.015
  15. S. G. Burton, A. Boshoff, W. Edwards, and P. D. Rose, 'Biotrasnformation of phenols using immobilized polyphenol oxidase', J. Mol. Catal. B: Enzym., 5, 411 (1998) https://doi.org/10.1016/S1381-1177(98)00020-4
  16. R.-S. Juang and S.-Y. Tsai, 'Enhanced biodegradation of mixed phenol and sodium salicylate by Pseudomonas putida in membrane contactors', Water Res., 40, 3517 (2006) https://doi.org/10.1016/j.watres.2006.08.005
  17. E. Erhan, B. Keskinler, G. Akay, and O. F. Algur, 'Removal of phenol from water by membrane-immobilized enzymes Part I. Dead-end filtration', J. Membr. Sci., 206, 361 (2002) https://doi.org/10.1016/S0376-7388(01)00779-7
  18. G. Akay, E. Erhan, B. Keskinler, and O. F. Algur, 'Removal of phenol from water by membrane-im mobilized enzymes Part II. Cross-flow filtration', J. Membr. Sci., 206, 61 (2002) https://doi.org/10.1016/S0376-7388(01)00626-3
  19. J. K. Hong and K. H. Youm, 'Production of cyclodextrin using membrane-enzyme reactor', Membrane Journal, 8, 170 (1998)
  20. G. M. Riso, M. P. Belleville, D. Paolucci, and J. Sanchez, 'Progress in enzymatic membrane reactors-A review', J. Membr. Sci., 242, 189 (2004) https://doi.org/10.1016/j.memsci.2003.06.004
  21. T.-P. Chung, P.-C. Wu, and R.-S. Juang, 'Process development for degradation of phenol by Pseudomonas putida in hollow-fiber membrane bioreactors', Biotechnol. Bioeng., 87, 119 (2004) https://doi.org/10.1002/bit.20127
  22. B. Marrot, A. B.-Martinez, P. Moulin, and N. Roche, 'Biodegradation of high phenol concentration in a membrane bioreactor', Int. J. Chem. Reactor Eng., 6, A8 (2008)
  23. A. Lante, A. Crapisi, A. Krastanov, and P. Spettol, 'Biodegradation of phenols by laccase immobilized in a membrane reactor', Process Biochem., 26, 51 (2000)
  24. W. Edward, R. Bownes, W. D. Leukes, E. P. Jacobs, R. Sanderson, P. D. Rose, and S. G. Burton, 'A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents', Enzyme Microb. Technol., 24, 209 (1999) https://doi.org/10.1016/S0141-0229(98)00110-0
  25. Y. Li and K.-C. Loh, Continuous phenol biodegradation at high concentrations in an immobilized-cell hollow fiber membrane bioreactor', J. Appl. Polym. Sci., 105, 1732 (2007) https://doi.org/10.1002/app.26416
  26. S. Ahn, S. Congeevaram, Y.-K. Choung, and J. Park, 'Enhanced phenol removal by floating fungal populations in a high concentration phenol-fed membrane bioreactor', Desalination, 221, 494 (2008) https://doi.org/10.1016/j.desal.2007.01.110
  27. R.-S. Juang and S.-Y. Tsai, 'rowth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate' Biochem. Eng., 31, 133 (2006) https://doi.org/10.1016/j.bej.2006.05.025
  28. M. Bodzek, J. Bohdziewicz, and M. Kowalska, 'Immobilized enzyme membranes for phenol and cyanide decomposition', J. Membr. Sci., 113, 373 (1996) https://doi.org/10.1016/0376-7388(95)00299-5
  29. P. K. Patel, M. S. Mondal, S. Modi, and V. Behere, 'Kinetic studies on the oxidation of phenols by the horseradish peroxidase compound I', Biochim. Biophys. Acta, 1339, 79 (1997)
  30. J. E. Prenosil and T. Hediger, 'Performance of membrane fixed biocatalyst reactors. I: Membrane reactor systems and modelling', Biotechnol. Bioeng., 31, 913 (1988) https://doi.org/10.1002/bit.260310904
  31. Y. Li and C. Wang, 'Phenol biodegradation in hybrid hollow-fiber membrane bioreactors', World J. Microbiol. Biotechnol., 24, 1843 (2008) https://doi.org/10.1007/s11274-008-9699-1
  32. A. M. Girelli, E. Mattei, and A. Messina, 'Immobilized tyrosinase reactor for on-line HPLC application: Development and characterization', Sens. Actuators, B, 121, 515 (2007) https://doi.org/10.1016/j.snb.2006.04.076
  33. J.-J. Xie, K.-K. Song, L. Qiu, Q. He, H. Huang, and Q.-X. Chen, 'Inhibitory effects of substrate analogues on enzyme activity and substrate specificities of mushroom tyrosinase', Food Chem., 103, 1075 (2007) https://doi.org/10.1016/j.foodchem.2006.04.030
  34. J. C. Espin, R. Varon, L. G. Fenoll, A. A. Gilabert, P. A. G.-Ruiz, J. T.udela, and F. G.-Canovas, 'Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase', Eur. J. Biochem., 267, 1270 (2000) https://doi.org/10.1046/j.1432-1327.2000.01013.x
  35. J. Karam and J. A. Nicell, 'Potential applications of enzymes in waste treatment', J. Chem. Tech. Biotechnol., 69, 141 (1997) https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U
  36. V. Papadimitrios, T. G. Sotiroudis, and A. Xenakis, 'Olive oil microemulsions as a biomimetic medium for enzymatic studies: oxidation of oleuropein', Journal of the American Oil Chemists Society (JAOCS), 82, 335 (2005) https://doi.org/10.1007/s11746-005-1075-4
  37. R. O. de Faria, V. R. Moure, M. A. L.de A. Amazonas, N. Krieger, and D. A. Mitchell, 'The biotechnological potential of mushroom tyrosinases', Food Technol. Biotechnol., 45, 287 (2007)
  38. A. M. Girelli, E. Mattei, and A. Messina, 'Phenols removal by immobilizaed tyrosinase reactor in on-line high performance liquid chromatography', Anal. Chim. Acta 580, 271 (2006) https://doi.org/10.1016/j.aca.2006.07.088
  39. D. V.-Racki, U. Kragl, and A. Liese, 'Benefits of enzyme kinetics modelling', Chem. Biochem. Eng. Q., 17, 7 (2003)
  40. G. Barbieri, A. Brunetti, F. Scura, G. F. Lentini, R. G. Agostino, M.-J. Kim, V. Formoso, E. Drioli, and K.-H. Lee, 'A Pd doped PVDF hollow fiber for the dissolved oxygen removal process', Korean Membrane J., 8, 1 (2006)
  41. J. Zhang, G. Barbieri, F. Scura, L. Giorno, and E. Drioli, 'Modeling of two separate phase enzyme membrane reactors for kinetic resolution of naproxen ester', Desalination, 200, 514 (2006) https://doi.org/10.1016/j.desal.2006.03.417
  42. S. Bhatia, W. S. Long, and A. H. Kamaruddin, 'Enzymatic membrane reactor for the kinetic resolution of racemic ibuprofen ester: modeling and experimental studies', Chem. Eng. Sci., 59, 5061 (2004) https://doi.org/10.1016/j.ces.2004.07.113
  43. E. E. Gonzo and J. C. Gottifredi, 'A simple and accurate method for simulation of hollow fiber biocatalyst membrane reactors', Biochem. Eng. J., 37, 80 (2007) https://doi.org/10.1016/j.bej.2007.03.011
  44. David R. Lide, ed. Handbook of Chemistry and Physics. Diffusion coefficients in liquids at infinite dilution. 2003-2004, CRC Press
  45. L. G. Fenoll, J. N. R.-Lopez, F. G.-Molina, F. G.-Canovas, and J. Tudela, 'Michaelis constants of mushroom tyrosinase with respect to oxygen in the presence of monophenol and diphenols', Int. J. Biochem. Cell Biol., 34, 332 (2002) https://doi.org/10.1016/S1357-2725(01)00133-9
  46. A. Boshoff, M. H. Burton, and S. G. Burton, 'Optimization of catechol production by membrane-immobilized polyphenol oxidase: A modeling approach', Biotechnol. Bioeng., 83, 1 (2003) https://doi.org/10.1002/bit.10695
  47. L. Giorno, E. D'Amore, R. Mazzei, E. Piacentini, J. Jhang, E. Drioli, R. Cassano, and N. Picci, 'An innovative approach to improve the performance of a two separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion', J. Membr. Sci., 295, 95 (2007) https://doi.org/10.1016/j.memsci.2007.02.041
  48. R. Mazzei, L. Giorno, A. Spadafora, S. Mazzuca, and E. Drioli, 'Improvement of b-glucosidase activity of Olea europaea fruit extracts processed by membrane technology', Korean Membrane J., 8, 58 (2006)
  49. I. M. A.-Reesh, 'Predicting the performance of immobilized enzyme reactors using reversible Michaelis-Menten kinetics', Bioprocess. Eng., 17, 131 (1997) https://doi.org/10.1007/PL00008960