1.5 Tesla 기기에서 중심주파수 조정과 송 신호강도(Transmission Gain)값 변화에 따른 인공물이 있는 자기공명영상의 질 보상에 관한 연구

A Study on Compensation for Imaging Qualities Having Artifact with the Change of the Center Frequency Adjustment and Transmission Gain Values at 1.5 Tesla MRI

  • 이재승 (순천향대학교 물리학과) ;
  • 구은회 (순천향대학교 물리학과) ;
  • 박철수 (한림성심대학교 방사선과) ;
  • 이선엽 (한림성심대학교 방사선과) ;
  • 이한주 (한림성심대학교 방사선과)
  • Lee, Jae-Seung (Department of Physics, Soonchunhyang University Graduate School) ;
  • Goo, Eun-Hoe (Department of Physics, Soonchunhyang University Graduate School) ;
  • Park, Cheol-Soo (Department of Diagnostic Radiological Technology, Hallym College) ;
  • Lee, Sun-Yeob (Department of Diagnostic Radiological Technology, Hallym College) ;
  • Lee, Han-Joo (Department of Diagnostic Radiological Technology, Hallym College)
  • 발행 : 2009.12.31

초록

자화율(susceptibility) 및 강자성체(ferromagnetic body)에 의한 인공물(artifact) 영향을 줄이기 위하여 중심주파수(center frequency) 정렬과 송 신호강도(transmission gain)값의 변화로 영상의 질을 보상하고자 한다. 본원에 내원한 환자 중 총 30명에 대하여 두 경부(head and neck)질환을 의심한 환자 중 남자 15명, 여자 15명으로 평균나이는 45세이었다. 사용된 장비는 GE 1.5T unit (GE, General Electric medical system, High Density)를 사용하여 Transmission gain (TG) 값을 평균 몸무게 60 kg을 기준으로 70, 90, 110, 130, 150까지 변환하여 검사를 하였다(p<0.05). 본 연구의 결과로서, 조영제 주입 전과 후의 지방소거 결과는 TG (70, 90, 110, 130, $150=3.23{\pm}0.35$, $4.31{\pm}0.02$, $4.23{\pm}0.21$, $5.12{\pm}0.25$, $7.13{\pm}0.72$, $8.31{\pm}0.01$, $5.21{\pm}0.15$, $6.14{\pm}0.08$, $5.23{\pm}0.72$, $5.91{\pm}0.06$)값에 다른 점수 분포를 나타났다(p<0.05). 절대값 대조도대 잡음비는 (TG, CNRpre, CNRpost, 70: $-1.44{\pm}0.11$, $-2.7{\pm}0.04$, 90: $-2.18{\pm}0.42$, $-4.41{\pm}0.43$, 110: $-2.89{\pm}0.43$, $-5.23{\pm}0.02$, 130: $-2.34{\pm}0.05$, $-5.26{\pm}0.01$, 150: $-2.09{\pm}0.08$, $-3.87{\pm}0.12$)을 얻었다(p<0.05). 본 실험에서 중심주파수 조정과 송 신호강도(transmission gain)값의 변화에 따라 인공물이 있을 때 영상의 질을 보상할 수 있다는 것을 확인하였다.

The purpose of this study is to compensate for susceptibility and a ferromagnetic body artifact using CFA and TGV on MR Imaging. A total of 30 patients (15 men and 15 women, mean age: 45 years) were performed on head and neck diseases. MR Unit used a 1.5T superconducting magnet (GE medical system, High Density). This study have investigated by changing with CFA and TGV (70, 90, 110, 130, 150) searching for compensation values about susceptibility and a ferromagnetic body artifact in 60 kg standards of body weight (p<0.05). As a quality results, Image qualities were obtained at different score from CFA and TGV (70, 90, 110, 130, $150=3.23{\pm}0.35$, $4.31{\pm}0.02$ $4.23{\pm}0.21$, $5.12{\pm}0.25$, $7.13{\pm}0.72$, $8.31{\pm}0.01$, $5.21{\pm}0.15$, $6.14{\pm}0.08$, $5.23{\pm}0.72$, $5.91{\pm}0.06$, p<0.05). Absolute CNRs (TG, CNRpre, CNRpost) were acquired with (70:$-1.44{\pm}0.11$, $-2.7{\pm}0.04$, 90:$-2.18{\pm}0.42$, $-4.41{\pm}0.43$, 110:$-2.89{\pm}0.43$, $-5.23{\pm}0.02$, 130:$-2.34{\pm}0.05$, $-5.26{\pm}0.01$, 150: $-2.09{\pm}0.08$, $-3.87{\pm}0.12$, p<0.05). In conclusions, this study could be compensated for metal and flow artifacts surrounding the tissues having artifact by changing CFA and TGV.

키워드

참고문헌

  1. Barakos JA, Dillon WP, Chew WM, et al: Orbit, skull base, and pharynx: contrast-enhanced fat suppression MR imaging. Radiology 179:191-198 (1991) https://doi.org/10.1148/radiology.179.1.2006277
  2. Robert D, Tien L: Fat-suppression MR imaging in neuroradiology: techniques and clinical application. AJR Am J Roentgenol 158:369-379 (1992). https://doi.org/10.2214/ajr.158.2.1729800
  3. Hinshaw DB, Holshouser BA, Engstrom HI, et al: Dental material artifacts on MRimages. Radiology 166:777 (1988) https://doi.org/10.1148/radiology.166.3.3340777
  4. Aziz H: Cervical spinal cord lesions in multiple sclerosis: T1- weighted inversion-Recovery MR imaging with phase- sensitive reconstruction. Radiology 246:258-264 (2007) https://doi.org/10.1148/radiol.2463061900
  5. Schmid MR, Hodler J, Seifert B, Steiner CL: Bone marrow abnormalities of foot and ankle: STIR versus T1-weighted contrast-enhanced fat-suppressed spin-Echo MR imaging. Radiology 224:463-469 (2002) https://doi.org/10.1148/radiol.2242011252
  6. Zoarski GH, Mackey JK, Anzai Y, et al: Head and neck: initial clinical experience with fast spin-echo MR imaging. Radiology 188:323 (1993) https://doi.org/10.1148/radiology.188.2.8327673
  7. Norman E. Leeds, Stephen A. Kieffer: Evolution of diagnostic neuroradiology from 1904 to 1999. Radiology 217:309 (2000) https://doi.org/10.1148/radiology.217.2.r00nv45309
  8. Leon Axel, Louis Kolman, Riad Charafeddine, et al: Origin of a signal intensity loss artifact in fat-saturation MR imaging. Radiology 217:911 (2000) https://doi.org/10.1148/radiology.217.3.r00dc43911
  9. Robert B. Lufkin, Alexandra Borges, Kim M. Nguyen, et al: MRI of the head and neck. 2nd ed. [book review]. Radiology 226:344 (2003) https://doi.org/10.1148/radiol.2261022570
  10. Harry J. Griffiths: Pocket atlas of head and neck MRI anatomy. Radiology 174:674 (1990) https://doi.org/10.1148/radiology.174.3.674
  11. Amil J. Gerlock: MRI of the brain, head, neck and spine: teaching atlas of clinical applications. Radiology 170:636 (1989) https://doi.org/10.1148/radiology.170.3.636
  12. Heiko Schoder, Henry W, Yeung D, et al: Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion. Radiology 231:65-72 (2004) https://doi.org/10.1148/radiol.2311030271
  13. Welker KM, Tsuruda JS, Hadley JR: Radio-frequency coil selection for MR imaging of the brain and skull base. Radiology 221:11 (2001) https://doi.org/10.1148/radiol.2211001537