Evaluation on Protrusion of the Imaginary Prostate Volume Using Three-Dimensional Volume Rendering

3차원 볼륨 렌더링을 이용한 가상 돌출형 전립선 부피 평가

  • Seoung, Youl-Hun (Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Joo, Yong-Hyun (Department of Radiology, The Seoul National University Bundang Hospital) ;
  • Rhim, Jae-Dong (Department of Radiological Science, The Daewon University College of Korea) ;
  • Choe, Bo-Young (Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea)
  • 성열훈 (가톨릭대학교 의과대학 의공학교실 생체의공학연구소) ;
  • 주용현 (분당서울대학교병원 영상의학과) ;
  • 임재동 (대원대학 방사선과) ;
  • 최보영 (가톨릭대학교 의과대학 의공학교실 생체의공학연구소)
  • Published : 2009.12.31

Abstract

This study is to compare the accuracy of evaluation regarding the volume of the prostate, which three-dimensional volume rendering was produced the shape of protrusion, by measuring two kinds of craniocaudal length from the top of the protrusion and from the exclusion of the protrusion as the starting points. For the imaginary protrusion prostate models, total of 10 models were roughly made by using devils-tongue jelly and changing each of the 10 ml of capacity from 10 ml to 100 ml. For the protrusion prostate models aimed at estimating the real volume, through 64 cannel computed tomography (CT) and 3.0 tesla magnetic resonance image (MRI) were conducted by planimetry technique from three-dimensional volume rendering. And then we performed to evaluate on significance of these volumes by wilcoxon signed rank test. Also the obtained volumes data by ellipsoid volume formula were measured the volume of protrusion prostate models two times with each method using the two kinds of craniocaudal length from top of the protrusion and from exclusion of the protrusion as the starting points. Finally, the significance of differences using wilcoxon signed rank test was evaluated between the real volume by planimetry technique and the measured volume by ellipsoid volume formula from three-dimensional volume rendering. The average of the protrusion length on the models was $0.90{\pm}0.18\;mm$ in CT and was $0.75{\pm}0.11\;mm$ in MRI. There were not statistically significant difference between MRI and CT from the volume of protrusion prostate models (p=0.414). In MRI (p=0.139) and CT (p=0.057), there were not statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from exclusion of the protrusion as the starting points. While, there were statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from top of the protrusion as the starting points in MRI (p=0.005) and CT (p=0.005). For the accurate measurement of the protrusion prostate models, the craniocaudal length of the prostate should be measured from the exclusion of the protrusion as the starting points.

2차원의 영상을 이용한 돌출형 전립선 비대증의 부피 평가방법에서 돌출부위를 포함시킬 경우와 포함시키지 않을 경우의 부피변화를 3차원 볼륨 렌더링(volume rendering, VR)을 이용하여 비교 평가하고자 한다. 돌출형 전립선 부피측정을 위한 가상 전립선 모델은 곤약을 이용해 임의로 평균 1 cm 정도로 돌출되도록 하여 10 ml에서 각각 10 ml씩 부피를 변화시켜 100 ml까지 총 10 개의 모델을 제작하였다. 이 때 제작된 모델의 부피측정은 64 channel 전산화단층촬영(computed tomography, CT)과 3.0 Tesla 자기공명영상(magnetic resonance image, MRI)을 이용하여 획득된 3차원 볼륨 영상자료로 계측하였다. 산출한 CT와 MRI영상들의 3차원 볼륨데이터 근접성 평가를 위해 wilcoxon 부호순위(signed rank) 검정을 하였다. 또한 획득한 영상자료는 3차원 영상처리를 통하여 볼륨 렌더링으로 재구성한 후 타원체부피공식법을 이용하여 돌출부위를 포함시킬 때와 포함하지 않을 때의 부피를 구하였다. 이 때 돌출 유무에 따라 각각 측정된 부피와 3차원 볼륨 렌더링의 부피를 wilcoxon 부호순위(signed rank) 검정을 사용하여 유의성을 평가했으며 상관계수(pearson's correlation coefficient, r)를 사용하여 상관관계를 분석하였다. 계측된 가상 전립선 모델의 돌출부위길이는 CT에서 $0.90{\pm}0.18\;mm$, MRI에서 $0.75{\pm}0.11\;mm$이었으며, CT와 MRI에서 계측된 3차원 영상 부피의 p-value는 0.414로 유의한 차이는 없었다. 그러나 MRI에서 측정된 3차원 영상 부피와 2차원 영상에서 돌출부위를 포함시킬 때의 p-value는 0.005인 반면 포함하지 않을 때의 p-value는 0.139로 나타났으며, CT에서도 측정된 3차원 영상 부피와 2차원 영상에서 돌출부위를 포함시킬 때의 p-value는 0.005인 반면 포함하지 않을 때의 p-value는 0.057로 나타났다. 돌출형 전립선의 부피측정은 돌출부위를 제외하고 상하길이를 측정하는 것이 3차원 볼륨 렌더링에 의한 부피 값과 더 가까운 부피 값을 얻을 수 있었다.

Keywords

References

  1. Mochtar CA, Kiemeney LA, van Riemsdijk MM, et al: Prostate-specific antigen as an estimator of prostate volume in the management of patients with symptomatic benign prostatic hyperplasia. Eur Urology 44:695-700 (2003) https://doi.org/10.1016/S0302-2838(03)00384-1
  2. Roehrborn CG, Boyle P, Gould AL, Waldstreicher J: Serum prostate-specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology 53: 581-589 (1999) https://doi.org/10.1016/S0090-4295(98)00655-4
  3. Littrup PJ, Kane RA, Williams CR, et al: Determination of prostate volume with transrectal US for cancer screening. Part I. Comparion with prostate-specific antigen assays. Radiology 178:537-542 (1991) https://doi.org/10.1148/radiology.178.2.1702894
  4. Cooner WH, Mosley BR, Rutherford CL Jr, et al: Clinical application of transrectal ultrasonography and prostate-specific antigen in the search for prostate cancer. J Urology 139:758-761 (1998)
  5. Isaac JT, Coffey DS: Etiology and disease process of benign prostatic hyperplasia. Prostate 2:33-50 (1989)
  6. Berry SJ, Coffey DS, Walsh PC, Ewing LL: The development of human benign prostate hyperplasia with age. J Urology 132:474-479 (1984) https://doi.org/10.1016/S0022-5347(17)49698-4
  7. Roehrborn CG, Girman CJ, Rhodes T, et al: Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound. Urology 49:548-557 (1997) https://doi.org/10.1016/S0090-4295(97)00031-9
  8. Terris MK, Stamey TA: Determination of prostate volume by transrectal ultrasound. J Urology 145:984-987 (1991) https://doi.org/10.1016/S0022-5347(17)38508-7
  9. Bangma CH, Niemer AQ, Grobbee DE, Schroder FH: Transrectal ultrasonic volumetry of the prostate: in vivo comparision of different methods. Prostate 28:107-110 (1996) https://doi.org/10.1002/(SICI)1097-0045(199602)28:2<107::AID-PROS5>3.0.CO;2-D
  10. Sehgal C, Broderick G, Whittington R, Groniak R, Arger P: Three-dimensional US and volumetric assessment of the prostate. Radiology 192:274-278 (1994) https://doi.org/10.1148/radiology.192.1.8208953
  11. Dahnert W: Determination of prostate volume with transrectal US for cancer screening. Radiology 183:625-627 (1992) https://doi.org/10.1148/radiology.183.3.1584907
  12. Moon SK, Kim HJ, Lim JW, Lee DH, Ko YT: Proper measurement of the prostate volume by transrectal ultrasound: Experimental study about the prostate with focal intravesical protrusion of the enlarged central gland. J Korean Soc Med Ultrasound 27:67-73 (2008)
  13. Cho JY, Lee HJ, Kim SH, Kim SH: Comparison of Methods of Volume Measurement of the Prostate by Transrectal Ultrasound: Experiment with Jelly Models. J Korean Soc Med Ultrasound 21:23-30 (2002) https://doi.org/10.7863/jum.2002.21.1.23
  14. Chia SJ, Heng CT, Chan SP, Foo KT: Correlation of intravesical prostatic protrusion with bladder outlet obstruction. BJU Int 91:371-374 (2003) https://doi.org/10.1046/j.1464-410X.2003.04088.x
  15. Kim BH, Sohn JC, Park CH, Kim CI: The usefulness of intravesical prostatic protrusion and bladder wall thickness measurement using transabdominal ultrasound in patients with benign prostatic hyperplasia. Korea J Urology 46:1180-1185 (2005)
  16. Byun JH, Cho KS, Sohn CH, Kim ST, Gong GG, Ahn HJ: Endorectal MRI of Prostate Cancer: Comparison with Findings on Radical Prostatectomy. Radiology 40:947-951 (1999)
  17. Schnall MD, Imai Y, Tomaszewski J, Pollack HM, Lendinski RE, Kressel HY: Prostate cancer: local staging with endorectal surface coil MR imaging. Radiology 178:797-802 (1991) https://doi.org/10.1148/radiology.178.3.1994421
  18. Quinn SF, Franzini DA, Demlow TA, et al: MR imaging of prostate cancer with an endorectal surface coil technique: correlation with whole-mount specimens. Radiology 190:323-327 (1994) https://doi.org/10.1148/radiology.190.2.8284376
  19. Klingenbeck-Regn K, Schaller S, Flor T, Ohnesorge BM, Kopp AF, Baum U: Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31:110-124 (1999) https://doi.org/10.1016/S0720-048X(99)00086-8
  20. Hu H, He HD, Foley WD, Fox SH: Four multidetector-row helical CT: Image quality and volume coverage speed. Radiology 215:55-62 (2000) https://doi.org/10.1148/radiology.215.1.r00ap3755
  21. Kayaalp C, Arda K, Oto A, Oran M: Liver volume measurement by spiral CT: an in vitro study. Clin Imaging 26:122-124 (2002) https://doi.org/10.1016/S0899-7071(01)00376-X
  22. Copel L, Sosna J, Weeks D, Kruskal JB, Raptopoulos V: Use of three-dimensional CT in the abdomen ; A useful preoperative planning tool. Surg Techmol Int 11:71-78 (2003)
  23. Rehani MM, Berry M: Radiation doses in computed tomography. Br Med J 320:593-594 (2000) https://doi.org/10.1136/bmj.320.7235.593
  24. Salo JO, Kivisaari L, Rannikko S, Lehtonen T: Computerized tomography and transrectal ultrasound in the assessment of local extension of prostatic carcinoma before radical retropublic prostatectomy. J Urology 137:435-438 (1987) https://doi.org/10.1016/S0022-5347(17)44059-6