Quantitative Analysis of Skin Lotion Containing Rutin by Voltammetric Method Using Graphite Electrode

흑연전극을 사용한 전압전류법을 이용하여 스킨로션 중 루틴성분의 정량분석

  • Kang, Myung-Kyu (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Won, Bo-Ryoung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Lee, Dong-Kuk (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Ly, Suw-Young (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology)
  • 강명규 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 원보령 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 이동국 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 이수영 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 박수남 (서울산업대학교 자연생명과학대학 정밀화학과)
  • Published : 2009.12.30

Abstract

We studied square-wave stripping voltammetry (SWV) to analyze quantitatively rutin contained in transparent skin-lotion using graphite electrode. The optimum analytical conditions for quantitative analysis of rutin were determined and the linear range was obtained of $1\;{\sim}\;8\;{\mu}g/mL$. The relative standard deviation of fifteen times repetition measurement for $0.1\;{\mu}g/mL$ of rutin was 0.080 and the detection limit was $0.01\;{\mu}g/mL$, respectively. We considered that this study could be used for quantitative analysis of active components contained in cosmetics.

스킨로션에 함유된 루틴을 정량하기 위하여 사각파형 전압전류법에서 흑연을 작업 전극으로 사용하여 연구하였다. 루틴을 정량하기 위한 최적 분석 조건을 찾았고 이 조건에서 $1.00\;{\sim}\;8.00\;{\mu}g/mL$의 농도에 대한 루틴의 검량선을 나타내었다. $0.10\;{\mu}g/mL$의 루틴 농도에서 15번 반복 측정한 상대 표준편차는 0.08이였으며, 최소 분석 검출 한계는 $0.01\;{\mu}g/mL$로 나타났다. 이 결과들을 바탕으로 화장품에 함유되어 있는 활성성분을 정량하는데 사용가능할 것으로 사료된다.

Keywords

References

  1. A. Scalbert, C. Manach, C. Morand, C. Remesy, and L. M. J. Jimenez, Dietary polyphenols and the prevention of diseases, CRC Crit. Rev. Food Sci. Nutr., 45, 287 (2005) https://doi.org/10.1080/1040869059096
  2. L. M. Magalh$\tilde{a}$es, M. A. Segundo, S. Reis, and J. L. F. C. Lima, Methodological aspects about in vitro evaluation of antioxidant properties, Anal. Chim. Acta, 613, 1 (2008) https://doi.org/10.1016/j.aca.2008.02.047
  3. S. Milardovicc, D. Ivekovicc, and B. S. Grabaricc, A novel amperometric method for antioxidant activity determination using DPPH free radical, Bioelectrochemistry, 68, 175 (2006) https://doi.org/10.1016/j.bioelechem.2005.06.005
  4. L. Barros, S. Falcao, P. Baptista, C. Freire, M. Vilas-Boas, and I. C. F. R. Ferreira, Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays, Food Chem., 111, 61 (2008) https://doi.org/10.1016/j.foodchem.2008.03.033
  5. J. Wang, N. Zhou, Z. Zhu, J. Huang, and G. Li, Detection of flavonoids and assay for their antioxidant activity based on enlargement of gold nanoparticles, Anal. Bioanal. Chem., 388, 1199 (2007) https://doi.org/10.1007/s00216-007-1295-y
  6. M. S. Cosio, S. Buratti, S. Mannino, and S. Benedetti, Use of an electrochemical method to evaluate the antioxidant activity of herbs extracts from the Labiatea family, Food Chem., 97, 725 (2006) https://doi.org/10.1016/j.foodchem.2005.05.043
  7. S. Chevion, M.A. Roberts, and M. Chevion, The use of cyclic voltammetry for evaluation of antioxidant capacity, Free Radic. Biol. Med., 28, 860 (2000) https://doi.org/10.1016/S0891-5849(00)00178-7
  8. H. Hotta, H. Sakamoto, S. Nagano, T. Osakai, and Y. Tsujino, Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants, Biochim. Biophys. Acta., 1526, 159 (2001) https://doi.org/10.1016/S0304-4165(01)00123-4
  9. E. I. Korotkova, Y. A. Karbainov, and A. V. Shevchuk, Study of antioxidant properties by voltammetry, J. Electroanal. Chem., 518, 56 (2002) https://doi.org/10.1016/S0022-0728(01)00664-7
  10. P. A. Kilmartin and C. F. Hsu, Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltammetry, Food Chem., 82, 501 (2003) https://doi.org/10.1016/S0308-8146(03)00066-9
  11. W. R. Sousa, C. Rocha, C. L. Cardoso, D. H. S. Silva, and M. V. B. Zanoni, Determination of the relative contribution of phenolic antioxidants in orange juice by voltammetric methods, J. Food Comp. Anal., 17(5), 619 (2004) https://doi.org/10.1016/j.jfca.2003.09.013
  12. M. D. S. Raymundo, M. M. D. S. Paula, C. Franco, and R. Fett, Quantitative determination of the phenolic antioxidants using voltammetric techniques, LWT-Food Science and Technology, 40(7), 1133 (2007) https://doi.org/10.1016/j.lwt.2006.07.001
  13. B. Nigovic and N. Kujundzic, Electrochemical behavior of iron (III) complexes with aminohydroxamic acids, Polyhedron, 21(16), 1661 (2002) https://doi.org/10.1016/S0277-5387(02)01024-0
  14. P. L. Buldini, S. Cavalli, A. Mevoli, and J. L. Sharma, Ion chromatographic and voltammetric determination of heavy and transition metals in honey, Food Chem., 73(4), 487 (2001) https://doi.org/10.1016/S0308-8146(01)00132-7
  15. S. M. Chen, Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate, J. Electroanal Chem., 521(1-2), 29 (2002) https://doi.org/10.1016/S0022-0728(02)00677-0
  16. J. J. O'Dea, J. Osteryoung, and R. A. Osteryoung, Theory of square wave voltammetry for kinetic systems, Anal. Chem., 53(4), 695 (1981) https://doi.org/10.1021/ac00227a028
  17. J. Wang, S. Bollo, J. L. L. Paz, E. Sahlin, and B. Mukherjee, Ultratrace measurements of nucleic acids by baseline-corrected adsorptive stripping squarewave voltammetry, Anal. Chem., 71, 1910 (1999) https://doi.org/10.1021/ac981432j
  18. L. Codognoto, S. A. S. Machado, and L. A. Avaca, Square wave voltammetry on boron-doped diamond electrodes for analytical determinations, Diamond and Related Meterials, 11, 1670 (2002) https://doi.org/10.1016/S0925-9635(02)00134-6
  19. M. P. A. Carracedo, R. A. G. Carra, and A. S. Misiego, A voltammetric and potentiometric study of copper in animal cerebrospinal fluids, Electroanalysis, 14, 433 (2002) https://doi.org/10.1002/1521-4109(200203)14:6<433::AID-ELAN433>3.0.CO;2-8
  20. S. Michalkiewics, M. Tutaj, M. Kaczor, and J. Malyszko, Electrochemical behavior of tocopherols on microelectrodes in acetic acid medium, Electroanalysis, 14, 297 (2002) https://doi.org/10.1002/1521-4109(200202)14:4<297::AID-ELAN297>3.0.CO;2-I
  21. A. Weiss, Ueber das rutin, Pharm. Zentralblatt, 13, 903 (1842)
  22. J. Q. Griffith, J. F. Couch, and M. A. Lindauer, Effect of rutin on increased capillary fragility in man, Proc. Soc. Exptl. Biol. Med., 55, 228 (1944) https://doi.org/10.3181/00379727-55-14532
  23. K. Iwata, S. Miwa, T. Inayama, H. Sasaki, K. Soeda, and T. Sugahara, Effects of kangra buckwheat on spontaneosly hypertensive rats, The Journal of Kagawa Nutrition College, 21, 55 (1990)
  24. Y. Matsubara, H. Kumamoto, Y. Iizuka, T. Murakami, K. Okamoto, H. Miyake, and K. Yokoi, Structure and hypotensive effect of flavonoid glucosides in Citrus unshiupeelings, Agric. Biol. Chem., 49, 909 (1985) https://doi.org/10.1271/bbb1961.49.909
  25. N. Yildizogle-Ari, V. M. Altan, O. Altinkurt, and Y. Ozturk, Pharmacological effects of rutin, Phytotherapy Research, 5, 19 (1991) https://doi.org/10.1002/ptr.2650050106
  26. I. B. Afanas'ev, E. A. Ostrakhovitch, E. V. Mikhal'chik, G. A. Ibragimova, and L. G. Korkina, Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals, Biochemical Pharmacology, 61, 677 (2001) https://doi.org/10.1016/S0006-2952(01)00526-3
  27. S. Nicoli, G. Dall'Asta, P. Colombo, and P. Santi, Transdermal delivery of rutin, 30th Intern. Symp. Control. Rel. Bioact. Master, Glasgow, 27 (2003)