산화조건에서 $PrCl_3$의 열적거동

Thermal behavior of $PrCl_3$ in an oxidizing condition

  • 발행 : 2009.12.31

초록

본 연구에서는 산화조건하 LiCl-KCl 공융염내에서 란탄계 염화물의 하나인 $PrCl_3$의 열적거동을 살펴보았다. 먼저 산소를 주입하면서 $PrCl_3$의 열중량분석(TGA; thermogravimetric analysis)을 실시하였고, 이 때 얻어진 결과들을 바탕으로, 산소분산법을 이용하여 온도에 따른 LiCl-KCl 공융염내 $PrCl_3$의 산화실험을 수행하였다. $PrCl_3$의 열중량분석 결과에 따르면, 약 $380^{\circ}C$까지 $PrCl_3$에서 염소의 해 리가 급격하게 발생되었고 약 $600^{\circ}C$에서 $PrCl_3$가 PrOCl로 전환되는 반응이 종료되는 것으로 확인되었다. 산소분산법에 의한 LiCl-KCl 공융염내 $PrCl_3$의 열적거동은 산화조건에서 열중량분석시 나타난 $PrCl_3$의 열적거동과 유사하였고, 발생된 PrOCl은 공융염내에서 불용성 화합물로써 바닥으로 침전하였다. 산소분산법에 의한 공융염내 $PrCl_3$의 PrOCl로의 전환은 $650^{\circ}C$ 이상의 온도에서 활발하게 진행되었고, 이 때 발생되는 배기가스내 $Cl_2$의 농도분석을 통해 공융염내 $PrCl_3$의 전환상태를 예측할 수 있을 것으로 판단된다.

In this study, a thermal behavior of $PrCl_3$ as one of the lanthanide chlorides in LiCl-KCl molten salts was investigated in an oxidizing condition. First, a thermo-gravimetric analysis (TGA) of $PrCl_3$ was carried out by an injection of $O_2$ gas. Based on the results, an oxidation of $PrCl_3$ in the molten salts was performed by sparging $O_2$ gas with changing temperatures. According to the TGA data of $PrCl_3$, a dissociation of $PrCl_3$ occurred rapidly by about $380^{\circ}C$ and a conversion of $PrCl_3$ to $PrCl_3$ was completed at about $600^{\circ}C$. The thermal behavior of $PrCl_3$ in LiCl-KCl molten salts by sparging $O_2$ gas was similar to that of $PrCl_3$ in the TGA test, and PrOCl as a insoluble compound in the molten salts was precipitated into the bottom of the molten salts. A conversion of $PrCl_3$ to PrOCl in the molten salts occurred actively at a higher temperature than $650^{\circ}C$. And it would be possible to estimate a conversion status of $PrCl_3$ to PrOCl by measuring a $Cl_2$ concentration in a flue gas generated from an oxidation test of $PrCl_3$ in LiCl-KCl molten salts.

키워드

참고문헌

  1. O. Shirai, M. Iizuka, T. Iwai, Y. Arai, "Electrode reaction of PU3+/PU couple in LiCl-KCI eutectic Melts: Comparison of the electrode reaction at the surface of liquid Bi with that at a solid Mo electrode," Analytical Sciences, 17, pp. 51-57 (2001). https://doi.org/10.2116/analsci.17.51
  2. 유재형, 이병직, 이한수, 김응호, “고온전해분리 기술의 개요 및 기존 핵연료주기 대체 기술로서의 적합성 검토”, 방사성폐기물학회지, 5(4), pp. 283-295 (2007).
  3. C. C. Mcpheeters, R. D. Pierce, T. P. Mulcahey, "Application of the pyrochemical process to recycle of actinides from LWP spent fuel," Prog. Nucl. Energy, 31, pp. 175-186 (1997). https://doi.org/10.1016/0149-1970(96)00010-8
  4. 김정국, 김광락, 김인태, 안도희, 이한수, “파이로프로세싱 발생 LiCl 염폐기물의 열발생”, 방사성폐기물학회지, 7(2), pp. 73-78 (2009)
  5. M. Iizuka, T. Koyama, N. Kondo, R. Fijita and H. Tanaka, "Actinides recovery from molten salt/liquid metal system by electrochemical methods," J. Nucl. Mater., 247, pp. 183 (1997). https://doi.org/10.1016/S0022-3115(97)00096-2
  6. Y. J. Cho, H. C. Yang. H. C. Eun, E. H. Kim and J. H. Kim, "Oxidation of Lanthanum Chloride in a LiCI-KCI Eutectic Molten Salt Using Oxygen Sparging Method," J. Ind. Eng. Chem., 11(5), pp. 707-711 (2005). https://doi.org/10.1021/ie50115a029
  7. Y. J. Cho, H. C. Yang, H. C. Eun, E. H. Kim, I. T. Kim, "Characteristics of oxidation reaction of rare-earth chlorides for precipitation in LiCI-KCI molten salt by oxygen sparging," J. Nucl. Sci. Technol., 43(10), pp. 1280-1286 (2006). https://doi.org/10.3327/jnst.43.1280
  8. G. Haeseler and F. Matthes, J. Less-Common Met., 9, pp. 133-151(1965). https://doi.org/10.1016/0022-5088(65)90090-1
  9. M. Ozawa, R. Onoe and H. Kato, "Formation and decomposition of some rare earth (RE=La, Ce, Pr) hydroxides and oxides by homogeneous precipitation," J. Alloy, Compd., 408-412, pp, 556-559 (2006). https://doi.org/10.1016/j.jallcom.2004.12.073
  10. Y. Casterillejo, M. R. Bermejo, E. Barrado, A. M. Martinez and P, D. Arocas, "Solubilization of rare earth oxides in the eutectic LiCl-KCl mixture at 450$^{\circ}C$ and in the equimolar $CaCI_2$-NaCl melt at 550$^{\circ}C$," J. Electroanal. Chem., 545, pp. 141-157 (2003). https://doi.org/10.1016/S0022-0728(03)00092-5