The Graft-take and Growth of Grafted Peppers (Capsicum annuum L.) Affected by Temperature, Relative Humidity, and Light Conditions During Healing and Acclimatization

접목활착 기간 중 온도.상대습도 및 광조건이 고추 접목묘의 활착 및 생육에 미치는 영향

  • Published : 2009.12.31

Abstract

This study was performed to evaluate the influence of temperature, relative humidity, and light conditions during healing and acclimatization on the graft-take and growth of grafted peppers (Capsicum annuum L.), in order to propose optimum environmental conditions for the healing and acclimatization of grafted peppers. The healing and acclimatization period was for six days and was divided into three stages (Stage I, II and III), of which each period was two days. Grafted peppers were healed under the condition of 30 and 95% relative humidity (RH) during Stage I. During Stage II and III, grafted peppers were healed and acclimatized under different temperatures ($20^{\circ}C$, $25^{\circ}C$, or $30^{\circ}C$) and RH conditions (75%, 85% or 95%). The growth of grafted peppers was greater under lower temperature and lower relative humidity conditions. The graft-take just after the end of healing and acclimatization was greater grafted peppers under high RH condition. However, the graft-take of peppers which were healed and acclimatized under $30^{\circ}C$ and RH 95%, dropped by about 10 percent on day seven after healing and acclimatization. And also, grafted peppers were healed and acclimatized under the different temperatures ($25^{\circ}C$ or $30^{\circ}C$), RH conditions (65%, 75% or 85%), and light condition (dark or light). Lower RH (to 65%) and light condition at $25^{\circ}C$ during healing and acclimatization promoted the graft-take and growth of grafted peppers.

접목 후 활착환경의 관리는 접목의 성공여부를 결정하는 중요한 요인이다. 일반적으로 활착초기 접목부위의 캘러스 분화를 촉진하고 식물체의 지나친 위조를 막기 위해 $25{\sim}30^{\circ}C$ 정도 온도와 90% 이상의 높음상대습도 조건하에서 관리하다가 활착이 진행됨에 따라 점차 온도 및 상대습도를 낮추고, 광 조사량을 늘려주는 환경관리방법이 제시되고 있다(Kim 등, 2001). 본 연구에서는 고추 접목묘의 활착 및 생육향상을 위한 활착단계별 환경조건을 제시하고자, 활착기간 중 온도, 상대습도 및 광 조건이 접목활착률 및 생육에 미치는 영향을 조사하였다. 암조건 하에서 총 6일간의 접목활착기간을 3단계로 나누어, 활착 1단계는 온도 $30^{\circ}C$, 상대습도 95% 조건하에서, 활착 2, 3단계에서는 온도($20^{\circ}C$, $25^{\circ}C$, 및 $30^{\circ}C$) 및 상대습도(75%, 85%, 및 95%) 조건을 달리 처리하였을 때, 접목활착률 및 생육을 조사하였다. 고추 접목묘의 활착을 위해서는 활착 초기 $30^{\circ}C$, 95% 상대습도 조건에서 2일정도 관리한 후, 이후 4일간은 온도와 상대습도 조건을 각각 $20{\sim}25^{\circ}C$, 75~85% 정도로 낮추어 주는 것이 바람직할 것으로 판단된다. 또한 접목활착기간 동안 온도 $30^{\circ}C$, 상대습도 85% 및 암 조건을 대조구로 하여, 활착기간 중 온도($25^{\circ}C$$30^{\circ}C$), 상대습도(65%, 75%, 및 85%) 및 광 조건(광 조사 유무, 광 조건 $45{\pm}2{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)을 달리하여 처리하였 때, 접목 활착률은 처리간 차이가 없었으며 활착기간 중 저온 저습의 광조사 기간이 길수록 생육이 증가하는 경향을 보여, $25^{\circ}C$ 온도조건하에서 저광 조사 및 65% 까지의 저습 조건이 고추 접목묘의 활착 및 생육촉진에 효과적인 것으로 판단된다.

Keywords

References

  1. Ahn, S.J., Y.J. Im, G.G. Chung, B.H. Cho, and S.R. Suh. 1999. Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature. Scientia Hort. 81:397-408 https://doi.org/10.1016/S0304-4238(99)00042-4
  2. Bletsos, F., C. Thanassoulopoulos, and D. Roupakias. 2003. Effect of grafting on growth, yield, and verticillium wilt of eggplant. Hortscience 38:183-186
  3. Chung, H. and Y. Choi. 2002. Enhancement of salt tolerance of pepper plants (Capsicum annuum) by grafting. J. Kor. Soc. Hort. Sci. 43:556-564. (in Korean)
  4. Crino, P., C.L. Bianco, Y. Rouphael, G. Colla, F. Saccardo, and A. Paratore. 2007. Evaluation of rootstock resistance to fusarium wilt and gummy stem blight and effect on yield and quality of a grafted 'inodorus' melon. Hortscience 42:521-525
  5. Cuartero, J., M.C. Bolarin, M.J. Asins, and V. Moreno. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot. 57:1045-1058 https://doi.org/10.1093/jxb/erj102
  6. Hartmann, H.T., D.E. Kester, F.T. Davises, Jr., and R.L. Geneve. 1997. Plant propagation principles and practices. 6th ed. Prentice-Hall, Inc. Jew Jersey, USA, pp. 392-436
  7. Jeffree, C.E. and M.M. Yeoman. 1983. Development of intercellular connections between opposing cells in a graft union. New Phytol. 93:491-509 https://doi.org/10.1111/j.1469-8137.1983.tb02701.x
  8. Kim. Y.H., C.S. Kim, J.W. Lee, and S.G. Lee. 2001. Effect of vapor pressure deficit on the evapotranspiration rate and graft-taking of grafted seedlings population under artificial lighting. Journal of Bio-Environment Control. 10: 232-236. (in Korean)
  9. Lee, J. and M. Oda. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28:61-124
  10. Maeda, E. 2004. Effects of PPF, Relative humidity and $CO_2$ concentration during healing and acclimatization period on the graft-take and growth of grafted cucumber transplants. Master thesis. Chiba University. Japan. (in Japanese)
  11. Matsuzoe, N., H. Okubo, and K. Fujieda. 1993. Resistance of tomato plants grafted on Solanum rootstocks to bacterial wilt and root-knot nematode. J. Japan. Soc. Hort. Sci. 61, 865-872 https://doi.org/10.2503/jjshs.61.865
  12. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). 2009. Vegetable production statistics 2008
  13. Nobuoka, T., T. Nishimoto, and K. Toi. 2005. Wind and light promote graft-take and growth of grafted tomato seedlings. J. Japan. Soc. Hort. Sci. 74(2):170-175. (in Japanese) https://doi.org/10.2503/jjshs.74.170
  14. Oka, Y., R. Offenbach, and S. Pivonia. 2004. Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. J. Nematol. 36:137-141
  15. Ruiz, J.M., A. Belakbir, I. Lopez-Cantarero, and L. Romero. 1997. Leaf-macronutrient content and yield in grafted melon plants: A model to evaluate the influence of rootstock genotype. Scientia Hort. 71:227-234 https://doi.org/10.1016/S0304-4238(97)00106-4
  16. Rural Development Administration (RDA), Republic of Korea. 2008. The pepper cultivation (The textbook for farming no. 115). Revised ed. RDA, Suwon, pp.150-151. (in Korean)
  17. Rivero, R.M., J.M. Ruiz, E. Sanchez, and L. Romero. 2003. Does grafting provide tomato plants an advantage against $H_2O_2$ production under conditions of thermal shock? Physiol. Plant. 117:44-50 https://doi.org/10.1034/j.1399-3054.2003.1170105.x
  18. Turquois, N. and M. Malone. 1996. Non-destructive assessment of developing hydraulic connections in the graft union of tomato. Journal of Experimental Botany. 47:701-707 https://doi.org/10.1093/jxb/47.5.701
  19. Venema, J.H., B.E. Dijk, J.M. Bax, P.R. van Hasselt, and J.T.M. Elzenga. 2008. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ. Exp. Bot. 63:359-367 https://doi.org/10.1016/j.envexpbot.2007.12.015
  20. Yetisir, H., M.E. Caliskan, S. Soylu, and M. Sakar. 2006. Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding. Environ. Exp. Bot. 58:1-8 https://doi.org/10.1016/j.envexpbot.2005.06.010