DOI QR코드

DOI QR Code

Fingerprinting Differentiation of Astragalus membranaceus Roots According to Ages Using 1H-NMR Spectroscopy and Multivariate Statistical Analysis

  • Shin, Yoo-Soo (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Bang, Kyong-Hwan (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • In, Dong-Su (Kongju National University) ;
  • Sung, Jung-Sook (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Seon-Young (College of Agriculture & Life Science, Seoul National University) ;
  • Ku, Bon-Cho (Biological Resource Center, KRIBB) ;
  • Kim, Suk-Weon (Biological Resource Center, KRIBB) ;
  • Lee, Dong-Ho (School of Life Sciences and Biotechnology, Korea University) ;
  • Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University)
  • Published : 2009.04.30

Abstract

The root of Astragalus membranaceus is a traditional folk medicine that has been used for many therapeutic purposes in Asia. It reportedly acts as an immunostimulant, tonic, hepatoprotective, diuretic, antidiabetic, analgesic, expectorant, sedative, and anticancer drug. In this study, metabolomic profiling was applied to the roots of A. membranaceus of different ages using NMR coupled with two multivariate statistical analysis methods: such as principal components analysis (PCA) and canonical discriminant analysis (CDA). This allowed various metabolites to be assigned in NMR spectra, including $\gamma$-aminobutyric acid (GABA), aspartic acid, succinic acid, glutamic acid, glutamine, N-acetyl aspartic acid, acetic acid, arginine, alanine, threonine, lactic acid, and valine. The score plot from PCA and also CDA allowed a clear separation between samples according to age.

Keywords

References

  1. Bailey, N. J. C., Cooper, P., Hadfield, S. T., Lenz, E. M., Lindon, J. C., Nicholson, J. K., Stanley, P. D., Wilson, I. D., Wright, B. and Taylor, S. D. (2000). Application of directly coupled HPLC-NMR-MS/MS to the identification of metabolites of 5-trifluoromethylpyridone(2-hydroxy-5-trifluoromethylpyridine) in hydroponically grown plants. J. Agric. Food Chem. 48, 42-46 https://doi.org/10.1021/jf990387t
  2. Belton, P. S., Colquhoun, I. J. , Kemsley, E. K., Delgadillo, I., Roma, P., Dennis, M. J., Sharman, M., Holmes, E., Nicholson, J. K. and Spraul, M. (1998). Application of chemometircs to the 1H NMR spectra of apple juices: discrimination between apple varieties. Food Chem. 61, 207-213 https://doi.org/10.1016/S0308-8146(97)00103-9
  3. Chang, H. and But, P. (1987). Pharmacology and applications of Chinese material medica. World Scientific., Singapore
  4. Choi, H. K., Choi, Y. H., Verberne, M., Lefeber, A. W. M., Erkelens, C. and Verpoorte, R. (2004). Metabolic fingerprinting of wild type and transgenic tobacco plants by $^1H$ NMR and multivariate analysis technique. Phytochemistry 65, 857-864 https://doi.org/10.1016/j.phytochem.2004.01.019
  5. Eriksson, L., Johansson, E., Kettaneh-Wold, N. and Wold, S. (2001). Multi-and Megavariate data analysis. Principles and applications. Umetrics Academy., Umea, Sweden
  6. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N. and Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnol. 18, 1157-1161 https://doi.org/10.1038/81137
  7. Krishnan, P., Kruger, N. J. and Ratcliffe, R. G. (2004). Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56, 255-265 https://doi.org/10.1093/jxb/eri010
  8. Le Gall, G., Coloquhoun, I. J. and Defernez, M. (2004). Metabolite profiling using $^1H$ NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). J. Agric. Food Chem. 52, 692-700 https://doi.org/10.1021/jf034828r
  9. Ma, X. Q., Shi, Q., Duan, J. A., Dong, T. T. X. and Tsim, K. W. K. (2002). Chemical analysis of radix astragali (Huangqi) in china: a comparison with its adulterants and seasonal varations. J. Agric. Food Chem. 50, 4861-4866 https://doi.org/10.1021/jf0202279
  10. Matthew, C., Lawoko, C. R. O, Korte, C. J. and Smith, D. (1994). Application of canonical discriminant analysis, principal component analysis, and canonical correlation analysis as tools for evaluating differences in pasture botanical composition. New Zealand J. Agric. Res. 37, 509-520 https://doi.org/10.1080/00288233.1994.9513090
  11. Nozal, M. J., Bernal, J. L., Toribio, L., Alamo, M. and Diego, J. C. (2005). The use of carbohydrate profiles and chemometrics in the characterization of natural honeys of identical geographical origin. J. Agric. Food Chem. 53, 3095-3100 https://doi.org/10.1021/jf0489724
  12. Ott, K. H., Aranibar, N., Singh, B. and Stockton, Q. W. (2003). Metabolomic classifies pathway affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry 62, 971-985 https://doi.org/10.1016/S0031-9422(02)00717-3
  13. Pauli, G. F. (2001). qNMR-a versatile concept for the validation of natural product reference compounds. Phytochem. Anal. 12, 28-42 https://doi.org/10.1002/1099-1565(200101/02)12:1<28::AID-PCA549>3.0.CO;2-D
  14. Petrakis, P. V., Agiomyrgianaki, A., Christophoridou, S., Spyros, A. and Dais, P. (2008). Geographical characterization of greek virgin olive oils (cv. Koroneiki) using $^1H and ^{31}P$ NMR fingerprinting with canonical discriminant analysis and classification binary trees. J. Agric. Food Chem. 56, 3200-3207 https://doi.org/10.1021/jf072957s
  15. Raamsonk, L. M., Teusink, B. and Broadhurst, D. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19, 45-50 https://doi.org/10.1038/83496
  16. Shao, B. M., Xu, W., Dai, H., Yu, P., Li, Z. and Gao, X. M. (2004). A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a chinese medicinal herb. Biochem. Biophys. Res. Comm. 320, 1103-1111 https://doi.org/10.1016/j.bbrc.2004.06.065
  17. Shin, Y. S., Bang, K. H., In, D. S., Kim, O. T., Hyun, D. Y., Ahn, I. O., Ku, B. C., Kim, S. W., Seong, N. S., Cha, S. W., Lee, D. and Choi, H. K. (2007). Fingerprinting analysis of fresh ginseng roots of different ages using $^1H-NMR$ spectroscopy and principal components analysis. Arch. Pharm. Res. 12, 1625-1628 https://doi.org/10.1007/BF02977333
  18. Sobolev, L. J., Last, R. L. and Fernie, A. R. (2003). Proton high-field NMR study of tomato juice. Mag. Res. Chem. 41, 237-245 https://doi.org/10.1002/mrc.1176
  19. Wu, T., Annie Bligh, S. W., Gu, L. H., Wang, Z. T., Liu, H. P., Cheng, X. M., Branford-White, C. J. and Hu, Z.B. (2005). Simultaneous determination of six isoflavonoids in commercial radix Astragali by HPLC-UV. Fitoterapia 76, 157-165 https://doi.org/10.1016/j.fitote.2004.11.006

Cited by

  1. The relations between metabolic variations and genetic evolution of different species vol.477, 2015, https://doi.org/10.1016/j.ab.2015.02.024
  2. Evaluation of the water soluble extractive of astragali radix with different growth patterns using 1H-NMR spectroscopy vol.70, pp.9-10, 2015, https://doi.org/10.1515/znc-2015-5018
  3. Present and prospect of plant metabolomics vol.37, pp.1, 2010, https://doi.org/10.5010/JPB.2010.37.1.012
  4. Nuclear Magnetic Resonance (NMR) Spectroscopy For Metabolic Profiling of Medicinal Plants and Their Products vol.46, pp.5, 2016, https://doi.org/10.1080/10408347.2015.1106932
  5. Nuclear magnetic resonance based metabolomic differentiation of different Astragali Radix vol.15, pp.5, 2017, https://doi.org/10.1016/S1875-5364(17)30057-2
  6. Improvement of floral scent of ornamentals via metabolic engineering vol.37, pp.1, 2010, https://doi.org/10.5010/JPB.2010.37.1.001
  7. Metabolomic profiling of matured coconut water during post-harvest storage revealed discrimination and distinct changes in metabolites vol.8, pp.55, 2018, https://doi.org/10.1039/C8RA04213F