DOI QR코드

DOI QR Code

A Study on Updating of Analytic Model of Dynamics for Aircraft Structures Using Optimization Technique

최적화 기법을 이용한 비행체 구조물 동특성 해석 모델의 최신화 연구

  • Published : 2009.02.01

Abstract

Analytical modal verification is considered as the process to provide an acceptable description of the subject structure's behaviour. In general, results of original analytical model are different with actual structure results to uncertainty like non-linearity of material, boundary and modified shape, etc. In this paper, the dynamic model of glider's wing is correlated with static deformation and vibration test results by goal-attainment method, multi-objects optimization technique. The structural responses are predicted by using finite element method and optimization is carried out by using the SQP(sequential quadratic programming) method which is widely used in the constrained nonlinear optimization problem. The MAC(Modal Assurance Criterion) is used to modify the mode shapes and quantify the similarity.

해석용 모델의 검증이란 완성된 모델이 실제 제품의 특성을 반영하고 있는지에 대한 확인절차이다. 일반적으로 해석모델작성 시 형상의 단순화 및 비선형특성의 반영에 대한 한계 등으로 공학적 가정을 이용하므로 실제 구조와는 다른 물리적, 기계적 특성을 갖게 된다. 본 연구에서는 순차적 2차계획법(Sequential Quadratic Programming, SQP)을 이용하는 목표달성기법(Goal-Attainment Method)의 다목적 최적화 기법을 이용하여 활공체 날개의 정적 처짐과 고유진동수 차이를 최소화하는 방법으로 구조모델의 최신화를 수행하였으며, 모드형상의 일치성을 정량적으로 판단하기 위하여 Modal Assurance Criterion(MAC)를 이용하였다.

Keywords

References

  1. William D. Anderson and Sean Mortara, "F-22 Aeroelastic design and test validation", AIAA 2007-1764, 48th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, Apr. 23-26, 2007.
  2. Michael Mohaghegh, "Validation and certification of aircraft structures", AIAA 2005-2162, 46th AIAA/ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas, Apr. 18-21, 2005.
  3. Y. X. Wu, J. Zhong, C. Conti and P. Dehombreux, "Quasi-mode shape based dynamic finite element model updating method", Journal of Materials Processing Technology, Vol. 138, Issues 1-3, 2003, pp. 518-521. https://doi.org/10.1016/S0924-0136(03)00138-9
  4. Michimasa Fujino, Hiroki Oyama and Hideo Omotani, "Flutter character istics of an over-the-wing engine mount business-jet configuration", AIAA 2003-1942, 44th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, Apr. 7-10, 2003.
  5. Kwan-Hwa Byun and Seung-moon Jun, "Flutter analysis of F-16 aircraft using test modal data", KSAS International Journal., Vol. 34, No.4, 2005, pp. 76-82.
  6. Sung Ki Jun g, Hoang Anh Duong, Young Min Lee, Jin Hee Lee, Rho Shin Myong and Tae Hwan Cho, "A sta tic fluid-structure Interaction analysis system based on the navier-stokes equations for the prediction of aerodynamic characteristics of aircraft", KSAS International Journal. Vol. 36, No.6, 2008, pp. 532-540.
  7. The MathWorks, Inc., Optimization toolbox user's guide, 2008, Chap. 5.
  8. ABAQUS, Inc., Getting started with ABAQUS, 2006.
  9. Garret N. Vanderplaats, Numerical optimization techniques for engineering design with application, 1984, Chap.6, McGraw-Hill, New York.
  10. Allenmang, R. J., "The Modal Assurance Criterion-Twenty Years of Use and Abuse, Sound and Vibration", Vol. 37, No.8, 2003, pp. 14-23.

Cited by

  1. Fluid-Structure Interaction Analysis of High Aspect Ratio Wing for the Prediction of Aero-elasticity vol.38, pp.6, 2010, https://doi.org/10.5139/JKSAS.2010.38.6.547