DOI QR코드

DOI QR Code

복합재료 블레이드의 불확실성을 고려한 헬리콥터 허브 진동하중 해석

Vibratory Hub Loads of Helicopters due to Uncertainty of Composite Blade Properties

  • 유영현 (건국대학교 항공우주정보시스템공학과 대학원) ;
  • 정성남 (건국대학교 항공우주정보시스템공학과)
  • 발행 : 2009.07.01

초록

본 연구에서는 개별 블레이드의 복합재료 물성의 불확실성에 의해 발생하는 허브 진동하중의 특성에 대해 고찰하였다. 몬테-카를로 시뮬레이션 기법을 적용하여 시험에서 얻은 복합재료의 기계적 특성으로부터 블레이드의 단면 강성계수에 대한 확률적 분포를 구하였다. 단면 강성계수의 평균 및 표준편차 값을 이용하여 통합 공탄성 해석 코드의 입력 파일을 생성하고, 이로부터 허브 작용 하중을 구하였다. 복합재료 블레이드의 불확실성 효과는 필연적으로 로터 시스템의 상이성을 야기함을 보였다. 또한 개별 강성계수의 변화에 대한 허브 진동 응답의 특성을 확인하였다.

In this work, the behavior of vibratory hub loads induced due to the uncertainties of composite material properties for each of the participating rotor blades is investigated. The random material properties of composites available from the existing experimental data are processed by using the Monte-Carlo simulation technique to obtain the stochastic distribution of sectional stiffnesses of composite blades. The coefficients of variation (standard deviation divided by the mean) obtained from the sectional stiffness constants are used as an input to the comprehensive aeroelastic analysis code that can evaluate the hub loads of a rotor system. It is found that the uncertainty effects of composite material properties inevitably bring a dissimilarity to the rotor system. The influence of hub vibration response with respect to the individual stiffness (flatwise bending, chordwise bending and torsion) changes is also identified.

키워드

참고문헌

  1. Antonio, C. C., and Hoffbauer L. N., "From local to global importance measures of uncertainty propagation in composite structures", Composite Structures, Vol. 85, No. 3, 2008, pp. 213-225. https://doi.org/10.1016/j.compstruct.2007.10.012
  2. Noor, A. K., Starnes Jr., J. H., and Peters, J. M., "Uncertainty Analysis of Composite Structures", Computer Methods in Applied Mechanics and Engineering, Vol. 185, 2000, pp. 413-432. https://doi.org/10.1016/S0045-7825(99)00269-8
  3. Oh, D. H., and Librescu, L., "Free Vibration and Reliability of Composite Cantilevers Featering Uncertain Properties", Reliability Engineering and System Safety, Vol. 56, 1997, pp. 265-272. https://doi.org/10.1016/S0951-8320(96)00038-5
  4. Pettit, C. L., “Uncertainty Quantification in Aeroelasticity: Recent Results and Research Challenges", Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 1217-1229. https://doi.org/10.2514/1.3961
  5. Kim, T. K., and Hwang, I. H., "Reliability Analysis of Composite Wing Subjected to Gust Loads", Composite Structures, Vol. 66, Nos. 1-4, 2004, pp. 527-531. https://doi.org/10.1016/j.compstruct.2004.04.072
  6. Pradlwarter, H. J., Pellissetti, M. F., Schenk, C. A., Schuller, G. I., Kreis, A., Fransen, S., Calvi, A., and Klein, M., "Realistic and Efficient Reliability Estimation for Aerospace Structures", Computer Methods in Applied Mechanics and Engineering, Vol. 194, Nos. 12-16, 2005, pp. 1597-1617. https://doi.org/10.1016/j.cma.2004.05.029
  7. Murugan, S., Ganguli, R., and Harursampath, D. "Aeroelastic Response of Composite Helicopter Rotor with Random Material Properties", Journal of Aircraft, Vol. 45, No. 1, 2008, pp. 306-322. https://doi.org/10.2514/1.30180
  8. Jung, S. N., Nagaraj, V. T., and Chopra, I., "Refined Structural Model for Thin- and Thick-Walled Composite Rotor Blades", AIAA Journal, Vol. 40, No. 1, Jan. 2002, pp. 105-116. https://doi.org/10.2514/2.1619
  9. Jones, R. M., "Mechanics of Composite Materials, 2/E", Taylor & Francis, Inc., New York, 1999.
  10. Murakami, H., Reissner, E., and Yamakawa, J., "Anisotropic Beam Theories with Shear Deformation", Journal of Applied Mechanics, Vol. 63, No. 3, 1996. https://doi.org/10.1115/1.2823347
  11. Bir, G., Chopra, I., and Ganguli, R., “University of Maryland Advanced Rotorcraft Code (UMARC) Theory Manual", UM-AERO Rept. 92-02, Univ. of Maryland, College Park, MD, 1992.
  12. Leishman, J. G. and Beddoes, T. S. "A Semi-empirical Model for Dynamic Stall", Journal of American Helicopter Society, Vol. 34, 1989, pp. 3-17. https://doi.org/10.4050/JAHS.34.3
  13. Bagai, A. and Leishman, J. G., "Rotor Free-wake Modeling using a Pseudo-implicit Technique Including Comparisons with Experiment", Journal of American Helicopter Society, Vol. 40, 1995, pp. 29-41. https://doi.org/10.4050/JAHS.40.29
  14. Vinckenroy, G. V., and Wilde, W. P. De., “The Use of Monte Carlo Techniques in Statistical Finite Element Methods for the Determination of the Structural Behaviour of Composite Materials Structural Components”, Composite Structures, Vol. 32, Nos. 1-4, 1995, pp. 247-253. https://doi.org/10.1016/0263-8223(95)00055-0
  15. Smith, E. C., "Vibration and Flutter of Stiff-Inplane Elastically Tailored Composite Rotor Blades", Mathematical and Computer Modeling, Vol. 19, 1994, pp. 27-45. https://doi.org/10.1016/0895-7177(94)90055-8