Abstract
The objective of this study is to develop the scheme to apply one-dimensional finite volume method (FVM) to natural river with complex geometry. In the previous study, FVM using the Riemann approximate solver was performed successfully in the various cases of dam-break, flood propagation, etc. with simple and rectangular cross-sections. We introduced the transform the natural into equivalent rectangular cross-sections. As a result of this way, the momentum equation was modified. The accuracy and applicability of newly developed scheme are demonstrated by means of a test example with exact solution, which uses triangular cross-sections. Secondly, this model is applied to natural river with irregular cross-sections and non-uniform lengths between cross-sections. The results shows that the aspect of flood propagation, location and height of hydraulic jump, and numerical solutions of maximum water level are in good agreement with the measured data. Using the developed scheme in this study, existing numerical schemes conducted in simple cross-sections can be directly applied to natural river without complicated numerical treatment.
본 연구는 단순한 직사각형 하도에서 발생한 댐 붕괴 및 홍수전파 등에서 만족스러운 결과를 보였던 Riemann 근사해법을 이용한 1차원 유한체적기법을 불규칙한 하도형상의 자연하도에 적용하기 위하여 새로운 기법을 개발하는 것이 목적이다. 이를 위하여 자연하천 단면을 등가의 직사각형 단면으로 변환하는 개념을 도입하였으며, 그 결과, 운동량방정식이 수정되었다. 새롭게 개발된 기법을 정확해가 존재하는 삼각형 단면하도의 댐 붕괴 흐름에 적용하고 그 결과를 비교함으로써, 기법의 정확성 및 적용성이 검증되었다. 단면의 형상 및 단면간 거리가 균일하지 않는 자연하도에 적용한 결과는 실측수위와 비교하여 홍수파의 전파 양상, 도수의 발생 위치 및 크기, 그리고 전 구간에서의 최대 수위가 잘 일치함을 나타낸다. 본 연구결과로부터 기존의 균일한 단면을 사용하여 개발된 기법들을 복잡한 수치처리과정 없이 자연하천 단면에 직접 적용할 수 있을 것으로 판단된다.