DOI QR코드

DOI QR Code

Criterion of Test Statistics for Validation in Credit Rating Model

신용평가모형에서 타당성검증 통계량들의 판단기준

  • Published : 2009.03.30

Abstract

This paper presents Kolmogorov-Smirnov, mean difference, AUROC and AR, four well known statistics that have been widely used for evaluating the discriminatory power of credit rating models. Criteria for these statistics are determined by the value of mean difference under the assumption of normality and equal standard deviation. Alternative criteria are proposed through the simulations according to various sample sizes, type II error rates, and the ratio of bads, also we suggest the meaning of statistic on the basis of discriminatory power. Finally we make a comparative study of the currently used guidelines and simulated results.

신용평가모형의 판별력에 대한 검정방법으로 콜모고로프-스미르노프, 평균차이, AUROC, AR등과 같은 통계량이 널리 사용되고 있다. 이러한 통계량들의 판단기준은 정규분포 가정 하에서 평균차이를 기준으로 설정되었다. 본 연구에서는 모의 실험을 통해서 표본크기, 불량률 그리고 제II종 오류율을 고려하는 대안적인 판단기준을 제 안하고 현재 적용되고 있는 판단기준과 비교해본다. 또한 판별력 정도에 따른 각 통계량들의 의미를 10단계로 정의하고 모의 실험 결과와 현재 적용되고 있는 판단기준을 비교해 본다.

Keywords

References

  1. 박용석, 홍종선 (2008). 신용평가모형에서 콜모고로프-스미르노프 검정기준의 문제점, <한국통계학회 논문집>, 15, 1013-1026 https://doi.org/10.5351/CKSS.2008.15.6.1013
  2. 홍종선, 이창혁, 김지훈 (2008). 범주형 재무자료에 대한 신용평가모형 검증 비교, <한국통계학회 논문집>, 15, 615-631 https://doi.org/10.5351/CKSS.2008.15.4.615
  3. Egan, J. P. (1975). Signal Detection Theory and ROC Analysis, Series in Cognitition and Perception, Academic Press, New York
  4. Engelmann, B., Hayden, E. and Tasche, D. (2003). Measuring the Discriminative Power of Rating Systems, Discussion paper Series 2: Banking and Financial Supervision
  5. Faraggi, D. and Reiser, B. (2002). Estimation of the area under the ROC curve, Statistics in Medicine, 21, 3093-3106 https://doi.org/10.1002/sim.1228
  6. Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143, 29-36 https://doi.org/10.1148/radiology.143.1.7063747
  7. Joseph, M. P. (2005). A PD validation framework for Basel II internal ratings-based systems, Credit Scoring and Credit Control Ⅳ
  8. Sobehart, J. R., Keenan, S. C. and Stein, R. M. (2000). Benchmarking quantitative default risk models: A validation methodology, Moody's Investors Service
  9. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems, Science, 240, 1285-1293 https://doi.org/10.1126/science.3287615
  10. Swets, J. A., Dawes, R. M. and Manahan, J. (2000). Better decisions through science, Scientific American, 283, 82-87 https://doi.org/10.1038/scientificamerican1000-82
  11. Tasche, D. (2006). Validation of internal rating systems and PD estimates, eprint arXiv:physics/0606071
  12. Wilkie, A. D. (2004). Measures for Comparing Scoring Systems, In Readings in Credit Scoring-Recent Developments, Advances, and Aims, Oxford Finance

Cited by

  1. Comparisons of the corporate credit rating model power under various conditions vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1207