Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles

습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석

  • Kim, Kyoung-Hoon (School of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Kim, Se-Woong (School of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Ko, Hyung-Jong (School of Mechanical Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학부) ;
  • 김세웅 (금오공과대학교 기계공학부) ;
  • 고형종 (금오공과대학교 기계공학부)
  • Published : 2009.06.30

Abstract

An exergy analysis is carried out for the regenerative wet-compression Brayton cycle which has a potential of enhanced thermal efficiency owing to the reduced compression power consumption and the recuperation of exhaust energy. Using the analysis model, the effects of pressure ratio and water injection ratio are investigated on the exergy efficiency of system, exergy destruction ratio for each component of the system, and exergy loss ratio due to exhaust gas. The results of computation for the typical cases show that the regenerative wet-compression gas turbine cycle can make a notable enhancement of exergy efficiency. The injection of water results in a decrease of exergy loss of exhaust gas and an increase of net power output.

습식압축으로 압축소요동력을 줄이고 재생기로 배기가스 에너지를 회수함으로써 열효율을 향상시킬 수 있는 습식압축 재생 브레이튼 사이클에 대하여 엑서지 해석을 수행하였다. 해석모델을 통하여 시스템의 엑서지 효율과 요소별 엑서지 파괴비 및 배기가스로 인한 엑서지 손실비에 미치는 압력비와 물분사율의 영향을 조사하였다. 전형적인 운전조건에 대한 계산 결과 습식압축 재생 가스터빈 사이클에 의하여 엑서지 효율을 상당히 향상시킬 수 있음을 확인하였다. 물 분사 효과는 배기가스의 엑서지 손실의 감소와 출력 동력의 증가로 나타난다.

Keywords

References

  1. Jonsson M. and Yan J.; Energy, 30, 1013 (2005) https://doi.org/10.1016/j.energy.2004.08.005
  2. Cataldi A. et al.; GT2004-53788, IGTI- ASME Turboexpo, Vienna (2004)
  3. Bhargava R. and Meher-Homji C.B.; ASME J. of Eng. for Gas Turbines and Power, 127, 145 (2005) https://doi.org/10.1115/1.1712980
  4. Horlock J.H.; 2001-GT-0343, IGTI-ASME Turbo expo, New Orleans (2001)
  5. White A.J. and Meacock A.J.; ASME J. of Eng. Gas Turbines and Power, 126, 748 (2004) https://doi.org/10.1115/1.1765125
  6. Kim K.H. and Perez-Blanco H.; GT2006- 90482, Barcelona (2006)
  7. Kim K.H. and Perez-Blanco H.; Applied Energy, 84, 16 (2007) https://doi.org/10.1016/j.apenergy.2006.04.008
  8. Perez-Blanco H., Kim K.H. and Ream S.; Applied Energy, 84, 1028 (2007) https://doi.org/10.1016/j.apenergy.2007.02.013
  9. Bejan A; "Advanced Engineering Thermo- dynamics," John Wiley & Sons, 3rd Ed. Chapter 5 (2006)
  10. Tsatsaronis G.; Energy, 32, 249 (2007) https://doi.org/10.1016/j.energy.2006.07.002
  11. Ozgener O. and Hepbasli A.; Renewable and Sustainable Energy Reviews, 11, 482 (2007) https://doi.org/10.1016/j.rser.2004.12.010
  12. Lior N. and Zhang N.;Energy, 32, 281 (2007) https://doi.org/10.1016/j.energy.2006.01.019
  13. Nishida K., Takagi T. and Kinoshita S.; Applied Energy, 81, 231 (2005) https://doi.org/10.1016/j.apenergy.2004.08.002
  14. Yari M. and Sarabchi K.; GT2005-68970, IGTI-Turboexpo, Reno (2005)
  15. Spalding D.B.; "Combustion and Mass Transfer," Pergamon Press, Chapter 3 (1979)
  16. Irvine T.F. and Liley P.E.; "Steam and gas tables with computer equations," Academic Press, Chapter 1 (1984)
  17. Khaliq A. and Kaushik S.C.; Applied Ther. Eng. 24, 1785 (2004) https://doi.org/10.1016/j.applthermaleng.2003.12.013
  18. Bejan A., Tsatsaronis G. and Moran M.; "Thermal design and optimization," John Wiley & Sons, Chapter 3 & p. 522 (1996)
  19. Szargut J., Morris D.R. and Steward F.R.; "Exergy analysis of thermal, chemical and metallurgical processes," Hemisphere, pp. 297-309 (1988)