A Study on the Flame Tilt and Flame Spread due to Up-slope on the Surface Fuel Bed - No wind condition -

경사에 따른 화염각 변화와 지표 화염 확산에 관한 연구 - 무풍조건 기반 -

  • 김동현 (국립산림과학원 산림방재연구과)
  • Published : 2009.10.31

Abstract

Flame spread velocity to virgin surface fuel bed on a ground slope increases as the flame gets closer to the slope according to the change of a ground slope angle. The existing studies have generally adopted the theory that flame gets closer to the slope as the slope angle increases, without considering the change of flame tilt against the slope. In this study, experiments were made on the actual characteristics of the flame on slopes of various angles, and as a result, this study offers the flame tilt equation according to the slope angle, and derive correlation between flame tilt and flame spread velocity on slope conditions.

경사면에서의 지표 연소물질에 대한 화염확산은 경사각변화에 따라 화염이 경사면과 가까워져 열전달이 많이 이루어져 확산이 빠르게 이루어진다. 기존 연구에서는 경사면에 대한 화염각 변화를 고려하지 않고 일반적으로 경사각의 기울어짐으로 인해 화염이 그 만큼 지표면과 가까워지는 것을 적용하였다. 따라서 본 연구에서는 경사면에서의 실제 화염의 성상에 대해 실험하였다. 그 결과 경사에 따른 화염기울기 산정식을 제안 하였고 경사조건에서의 화염기울기와 화염확산속도와의 관계에 대해 기술하였다.

Keywords

References

  1. 산림청 (2009) 2008년 산불통계연보
  2. 산림청_국립산림과학원 (2004) 한국의 산림입지 -산림토양-
  3. 안상현, 신영철 (2008) 경사에 따른 산불의 확산속도. 한국방재학회논문집, 한국방재학회, 제8권, 제4호, pp. 75-79
  4. 김동현, Tanaka Takeyoshi, 이명보, 김광일 (2009) 낙엽층 화염 높이 산정에 관한 연구. 2009년도 춘계학술논문발표회 논문집. 한국화재소방학회. pp. 365-371
  5. Kim, D.H., TANAKA, T. and Lee, M.-B. (2009) A numerical study of flame tilt by slope and wind added. International Wildfire Management Conference. P005
  6. Albini, F.A. (1981) A model for the wind-blown flame from a line fire. Combust. Flame, 43, pp. 155-174 https://doi.org/10.1016/0010-2180(81)90014-6
  7. Albini F.A. (1985) A model for fire spread in wildland fuels by radiation. Combustion Sci. Technology. 42, pp. 229-58 https://doi.org/10.1080/00102208508960381
  8. McCaffrey, B. The SFPE Handbook of Fire Protection Engineering, 2nd ed. (1995) Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA
  9. David R. Weise and Gregory S. Biging. (1996) Effects of wind velocity and slope on flame properties. Can. J. For. Res. 26. pp. 1849-1858 https://doi.org/10.1139/x26-210
  10. Dupuy, J.L. (1995) Slope and fuel load effects on fire behavior: laboratory experiments in pine needles fuel beds. Int J. Wildland Fire;5(3) pp. 153-64 https://doi.org/10.1071/WF9950153
  11. Zukoski, E.E., Cetegen, B.M. and Kubota, T. (1984) Visible structure of buoyant diffusion flames, Twentieth Symposium (International) on Combustion. Combustion Institute, Pittsburgh, PA, 1984, pp. 361-366 https://doi.org/10.1016/S0082-0784(85)80522-1
  12. Morandini, F., Santono, P.A. and Balbi, J.H. (2001) The contribution of radiant heat transfer to laboratory-scale fire spread under the influences of wind and slope. Fire Safety Journal 36. pp. 519-543 https://doi.org/10.1016/S0379-7112(00)00064-3
  13. Nelson, R.M. Jr. and Adkins, C.A. Flame characteristics o winddriven surface fires. Can. J. For. Res. 16, 1293-1300 (1986) https://doi.org/10.1139/x86-229
  14. Rothermel, R.C. and Anderson, H.E. (1966) Fire spread characteristics determined in the raboratory. USDA For. Serv. Intermountain Forest Rnge Exp. Res. Pap. INT-30
  15. Nelson, R.M. and Jr. (1980) Flame characteristics for fires in southern fuels. USDA Forest Service. Southeast. For. Exp. Stn. Res. Pap. SE-205
  16. Putnam AA. (1965) A model study win-blown free burning fires. Proceedings of the 14th Symposium (Int) Combustion. pp. 1039-1107 https://doi.org/10.1016/S0082-0784(65)80245-4
  17. Santoni, P.A. Balbi, J.H. (1998) Modelling of two-dimensional flame spread across a sloping fuel bed. Fire Safety Journal 31. pp. 201-225 https://doi.org/10.1016/S0379-7112(98)00011-3
  18. Wendy Anderson, Elsa Pastor, Bret Butler, Edward Catchpole, Jean- Luc Dupuy, Paulo Fernandes, Mercedes Guijarro, Jose-Miguel Mendes-Lopes, Joao Ventura. (2006) Evaluating models to estimate flame characteristics for free-burning fires using laboratory and field data. Forest Ecology and Management. 234S, S77 https://doi.org/10.1016/j.foreco.2006.08.113