DOI QR코드

DOI QR Code

Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$

${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성

  • Lee, Sun-Hwa (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Park, No-Kuk (Institute of Clean Technology, Yeungnam University) ;
  • Yoon, Suk-Hoon (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Chang, Won-Chul (KOCAT Inc.) ;
  • Lee, Tae-Jin (School of Chemical Engineering & Technology, Yeungnam University)
  • 이선화 (영남대학교 디스플레이화학공학부) ;
  • 박노국 (영남대학교 청정기술연구소) ;
  • 윤석훈 (영남대학교 디스플레이화학공학부) ;
  • 장원철 ((주)코캣) ;
  • 이태진 (영남대학교 디스플레이화학공학부)
  • Published : 2009.12.31

Abstract

$SF_6$, which has a high global warming potential, can be decomposed to sulfur and fluorine compounds through hydrolysis by $H_2O$ or oxidation by $O_2$ over solid acid catalysts. In this study ${\gamma}-Al_2O_3$ was employed as the solid acid catalyst for the abatement of $SF_6$ and its catalytic activity was investigated with respect to the reaction temperature and the space velocity. The catalytic activity for $SF_6$ decomposition by the hydrolysis reached the maximum at and above 973 K with the space velocity of $20,000\;ml/g_{-cat}{\cdot}h$, exhibiting a conversion very close to 100%. When the space velocity was lower than $45,000\;ml/g_{-cat}{\cdot}h$, the conversion was maintained at the maximum value. On the other hand, the conversion of $SF_6$ by the oxidation was about 20% under the same conditions. The SEM and XRD analyses revealed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during the hydrolysis and to $AlF_3$ during the oxidation, respectively. The size of $AlF_3$ after the oxidation was over $20\;{\mu}m$, and its catalytic activity was low due to the low surface area. Therefore, it was concluded that the hydrolysis over ${\gamma}-Al_2O_3$ was much more favorable than the oxidation for the catalytic decomposition of $SF_6$.

온실효과를 발생시킬 수 있는 $SF_6$는 고체 산 촉매상에서 물과 산소에 의해 가수분해 및 산화반응에서 황 및 불소화합물로 분해될 수 있다. 본 연구에서는 $SF_6$ 제거를 위한 고체 산 촉매로 ${\gamma}-Al_2O_3$가 사용되었으며, 반응온도와 공간속도에 따른 촉매활성이 조사되었다. 가수분해에 의한 촉매환성은 $20,000\;ml/g_{-cat}{\cdot}h$의 공간속도와 973 K이상의 반응온도 조건에서 $SF_6$ 전화율이 거의 100% 달하는 최대 값에 도달하였다. 공간속도가 $45,000\;ml/g_{-cat}{\cdot}h$이하에서 $SF_6$ 전화율은 최대값이 유지되었다. 한편, 동일한 반응조건에서 산화반응에 의한 $SF_6$ 전화율은 약 20%정도였다. ${\gamma}-Al_2O_3$는 가수분해과정 에서 ${\alpha}-Al_2O_3$, 산화반응과정에서 $AlF_3$로 각각 변화됨을 SEM과 XRD분석에 의해 확인되었다. 산화반응 후 $AlF_3$$20\;{\mu}m$이상 성장되었고, 이들의 촉매활성은 낮은 표면적 때문에 매우 낮아졌다. 그러므로 $SF_6$의 분해를 위한 촉매반응은 산화반응보다는 가수분해가 유리하다고 판단된다.

Keywords

References

  1. Jang, H. K., "Effect of $H_2O$ on Thermal Destruction of $SF_6$ and Catalyst Screening Study," M.S. Thesis, University of Soongsil, Seoul, 2002.
  2. Tsai, W.-T., "The decomposition products of sulfur hexafluoride $(SF_6)$ : Reviews of environmental and health risk analysis," J. Fluorine Chem., 128(11), 1345-1352 (2007). https://doi.org/10.1016/j.jfluchem.2007.06.008
  3. Wang, Y.-F., Shih, M., Tsai, C.-H., and Tsai, P.-J., "Total Toxicity Equivalents Emissions of $SF_6$, $CHF_3$, and $CCl_2F_2$ Decomposed in a RF Plasma Environment," Chemosphere, 62(10), 1681-1688 (2006). https://doi.org/10.1016/j.chemosphere.2005.06.036
  4. http://pdfserve.informaworld.com/144578_769136977_902624980. pdf.
  5. James, D. R., Sauers, I., Griffin, G. D., Van Brunt, R. J., Olthoff, J. K., Stricklett, K. L., Chu, F. Y., Robins, J. R., and Morrison, H. D., "Investigation of $S_2F_{10}$ Production and Mitigation in Compressed SF6-Insulated Power Systems," IEEE Electr. Insul. M., 9(3), 29-40 (1993). https://doi.org/10.1109/57.216785
  6. http://www.epa.gov/electricpower-sf6/documents/sf6_byproducts.pdf.
  7. Griffin, G. D., Sauers, I., Christophorou, L. G., Easterly, C. E., and Walsh, P. J., "On the Toxicity of Sparked $SF_6$," IEEE Electr. Insul., EI-18(5), 551-552 (1983). https://doi.org/10.1109/TEI.1983.298642
  8. Chang, M. B., and Lee, H. M., "Abatement of Perfluorocarbons with Combined Plasma Catalysis in Atmospheric-pressure Environment," Catal. Today, 89(1-2), 109-115 (2004). https://doi.org/10.1016/j.cattod.2003.11.016
  9. Xua, X.-F., Jeon, J. Y., Choi, M. H., Kim, H. Y., Choi, W. C., and Park, Y.-K., "A Strategy to Protect $Al_2O_3-based$ PFC Decomposition Catalyst from Deactivation," Chem. Lett., 34(3), 364-365 (2005). https://doi.org/10.1246/cl.2005.364
  10. Xua, X.-F., Jeon, J. Y., Choi, M. H., Kim, H. Y., Choi, W. C., and Park, Y.-K., "The Modification and Stability of ${\gamma}-Al_2O_3$ Based Catalysts for Hydrolytic Decomposition of $CF_4$," J. Mol. Catal A-Chem., 266(1-2), 131-138 (2007). https://doi.org/10.1016/j.molcata.2006.10.026
  11. Li, J., Wu, Y., Pan, Y., Liu, W., and Guo, J., "Influence of Fluorides on Phase Transition of ${\alpha}-Al_2O_3$ Formation," Ceram. Int., 33(6), 919-923 (2007). https://doi.org/10.1016/j.ceramint.2006.02.002
  12. Gaudon, M., Majimel, J., Heintz, J.-M., Feist, M., Damboumet, D., and Tressaud, A., "Fluorinated Transition Alumina with $Al_{2-x/3}O_{3-x}F_x$ Compositions: Thermal, Chemical, Structural and Morphological Investigations," J. Fluorine Chem., 129(12), 1173-1179 (2008). https://doi.org/10.1016/j.jfluchem.2008.09.004
  13. Daimon, K., and Kato, E., "Morphology of Corundum Crystallized by Heating Mixture of $\eta-Al_2O_3$ and $AlF_3$," J Cryst. Growth, 75(2), 348-352 (1980). https://doi.org/10.1016/0022-0248(86)90049-7
  14. Hartman, P., "The Attachment Energy as a Habit Controlling Factor: III. Application to Corundum," J. Cryst. Growth, 49(1), 166-170 (1980). https://doi.org/10.1016/0022-0248(80)90077-9