DOI QR코드

DOI QR Code

낮은 계산 복잡도를 갖는 Linear Prediction 기반의 SNR 추정 기법

LP-Based SNR Estimation with Low Computation Complexity

  • 김선애 (충북대학교 전자정보대학 전자공학과) ;
  • 조병각 (국방과학연구소 위성통신연구그룹) ;
  • 백광훈 (국방과학연구소 위성통신연구그룹) ;
  • 유흥균 (충북대학교 전자정보대학 전자공학과)
  • Kim, Seon-Ae (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Jo, Byung-Gak (Satellite Communication Group, ADD) ;
  • Baek, Gwang-Hoon (Satellite Communication Group, ADD) ;
  • Ryu, Heung-Gyoon (College of Electrical and Computer Engineering, Chungbuk National University)
  • 발행 : 2009.12.31

초록

채널의 상태가 시간에 따라 수시로 변하는 전송 환경에서 수신된 신호에 대한 잡음 비를 추정하는 것이 중요하다. 대부분의 SNR 추정기는 MF(Matched Filter) 후 수신된 샘플로 추정이 이루어진다. 하지만 이런 기법들은 무선 통신에서 채널의 상태에 민감한 특성을 갖는다. 하지만 수신기의 front-end에서 모아진 데이터들을 이용하는 선형 예측(LP: Linear Prediction) 기법을 기반으로 하는 신호 대 잡음 비 추정 알고리즘은 이에 비해 안정된 성능을 보인다. 본 논문에서는 LP 기반의 SNR 추정기를 소개하고, 기존의 LP 기법 기반으로 하는 SNR 추정 알고리즘의 계산 복잡도를 줄이기 위한 새로운 기법을 제안한다. 본 논문에서 제안하는 알고리즘은 Linear Prediction 오차를 구하는 과정에서 순방향 오차와 그 conjugate 값을 이용하여 SNR 추정 과정을 보다 간단하게 한다.

It is very important to estimate the Signal to Noise Ratio(SNR) of received signal in time varying channel state. Most SNR estimation techniques derive the SNR estimates solely from the samples of the received signal after the matched filter. In the severe distorted wireless channel, the performance of these estimators become unstable and degraded. LP-based SNR estimator which can operate on data samples collected at the front-end of a receiver shows more stable performance than other SNR estimator. In this paper, we study an efficient SNR estimation algorithm based on LP and propose a new estimation method to decrease the computation complexity. Proposed algorithm accomplishes the SNR estimation process efficiently because it uses the forward prediction error and its conjugate value during the linear prediction error update. Via the computer simulation, the performance of this proposed estimation method is compared and discussed with other conventional SNR estimators in digital communication channels.

키워드

참고문헌

  1. M. K. Simon, A. Mileant, 'SNR estimation for the baseband assembly', Jet Propulsion Lab., Pasadena, CA, Telecommunications and Data Acquisition Prog. Rep., pp. 42-85, May 1986
  2. R. B. Kerr, 'On signal and noise level estimation in a coherent PCM channel', IEEE Trans. Aerosp. Electron. Syst., vol. AES-2, pp. 450-454, Jul. 1966 https://doi.org/10.1109/TAES.1966.4501796
  3. D. R. Pauluzzi, N. C. Beaulieu, 'A comparison of SNR estimation techniques for the AWGN cha-nnel', IEEE Trans. on Comm., vol. 48, no. 10, pp. 1680-1691, Oct. 2000
  4. C. E. Gilchriest, 'Signal-to-noise monitoring', JPL Space Programs Summary, vol. IV, no. 37-27, pp. 169-184, Jun. 1966
  5. T. Bendict, T. Soong, 'The joint estimation of signal-to noise from the sum envelope', IEEE Trans. Inform. Theory, vol. 1T-13, pp. 447-454, Jul. 1967
  6. R. Matzner, F. Engleberger, 'An SNR estimation algorithm using fourth-order moments', Proc. IEEE Int. Symp. Information Theory, Trondheim, Norway, p. 119, Jun. 1994
  7. A. L. Brandao, B. L. Lopes, and D. C. McLernon, 'In-service monitoring of multipath delay and co- channel interference for indoor mobile communication systems', Proc. IEEE Int. Conf. Communications, vol. 3, pp. 1458-1462, May 1994
  8. S. Marple, Digital Spectral Analysis with Applications, Prentice-Hall, N.J., 1987
  9. W. Therrien, Discrete Random Signals and Statistical Signal Processing, Prentice-Hall, 1992
  10. H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley, 1996
  11. S. Haykin, Adaptive Filter Theory, Prentice-Hall, N.J., 1986
  12. C. Thomas, 'Maximum likelihood estimation of signal-to-noise ratio', Ph.D dissertation, Univ. of Southern California, Los Angles, 1967
  13. H. Van Trees, Detection, Estimation, and Modulation Theory, vol. 1, New York, Wiley, 1968
  14. N. Kamel, V. Jeoti, 'A llinear prediction based estimation of signal-to-noise ratio in AWGN channel', ETRI Journal, vol. 29, no. 5, pp. 607-613, Oct. 2007 https://doi.org/10.4218/etrij.07.0107.0012