DOI QR코드

DOI QR Code

인공 자기 도체를 이용한 기지국 안테나의 방사 특성 개선 및 두께 감소

The Radiation Characteristics Improvement and Thickness Reduction of Base Station Antenna with Artificial Magnetic Conductor

  • 손철홍 (연세대학교 전기전자공학과) ;
  • 안지환 (연세대학교 전기전자공학과) ;
  • 장기훈 (연세대학교 전기전자공학과) ;
  • 윤지환 (연세대학교 전기전자공학과) ;
  • 윤영중 (연세대학교 전기전자공학과)
  • Son, Cheol-Hong (Department of Electrical & Electronic Engineering, Yonsei University) ;
  • Ahn, Ji-Hwan (Department of Electrical & Electronic Engineering, Yonsei University) ;
  • Chang, Ki-Hun (Department of Electrical & Electronic Engineering, Yonsei University) ;
  • Yoon, Ji-Hwan (Department of Electrical & Electronic Engineering, Yonsei University) ;
  • Yoon, Young-Joong (Department of Electrical & Electronic Engineering, Yonsei University)
  • 발행 : 2009.12.31

초록

본 논문에서는 도체 판 대신 인공 자기 도체를 반사판으로 이용하여 방사 특성이 개선되고 두께를 줄인 PCS용 기지국 안테나 구조를 제안하였다. 반사판으로 도체 판을 사용하는 기존 기지국 안테나의 경우, 도체 판 끝부분에서 기생 방사가 발생하고 이는 안테나의 후방사를 증가시켜 기지국 안테나의 방사 특성을 악화시킨다. 하지만 인공 자기 도체를 사용하면 표면에서의 높은 임피던스에 의해 표면파가 억압되어 후방사를 크게 줄일 수 있다. 그리고 부엽 특성도 개선되어 서비스 지역이 겹치는 문제를 막을 수 있다. 뿐만 아니라, 인공 자기 도체 표면에서의 $0^{\circ}$ 반사 위상에 의해 기지국 안테나의 두께를 또한 줄일 수 있다.

In this paper, a Base Station Antenna(BSA) utilizing Artificial Magnetic Conductor(AMC) as reflector instead of common conductive plate to improve radiation characteristics and achieve low-profile is proposed. In the case of the conventional BSA on conductive surface which acts as a reflector, a secondary radiation is caused at the corner of the conductive surface, and it increases the back-lobe of the antenna, resulting in deteriorating the radiation characteristic of the conventional BSA. However, using the AMC, the back-lobe of the BSA can be largely reduced by the surface wave suppression. And the Side-Lobe Level(SLL) is also improved, resulting in preventing the service area overlapped. Furthermore, due to the $0^{\circ}$ reflection phase on AMC, the profile of the BSA can be also reduced.

키워드

참고문헌

  1. K. J. Oh, B. J. Kim, and J. H. Choi, "The design and implementation of a multi-band planar antenna for cellular/PCS/IMT-2000 base station", Journal of the Korean Institute of Electromagnectic Engineering and Science, vol. 15, no. 8, pp. 781-787, Aug. 2004
  2. Y. Yamada, K. Kagoshima, and K. Tsunekawa, "Diversity antennas for base and mobile stations in land mobile communication systems", IEICE Trans., vol. E74, no. 10, pp. 3202-3209, 1991
  3. S. H. Lee, J. N. Lee, D. S. Lee, J. K. Park, and H. S. Kim, "Design of the pattern adjustable base station antenna for WCDMA applications", Journal of the Korean Institute of Electromagnectic Engineering and Science, vol. 8, no. 2, pp. 64-69, Jun. 2008 https://doi.org/10.5515/JKIEES.2008.8.2.064
  4. T. Ohgane, "Spectral efficiency improvement by base station antenna pattern control for land mobile cellular systems", Global Telecommunications Conference, pp. 913-917, 1993
  5. The Korean Institute of Electromagnetic Engineering & Science, Antenna Technology Workshop 2008
  6. Y. Ebine, "Design of base station antennas for next generation cellular mobile radio(IMT-2000)", Tech. Rep. IEICE(2000), AP2000-4
  7. Y. Kimura, Y. Ebine, "Control of horizontal radiation pattern of base station antenna for cellular mobile communications by performing approach arrangement of slender metal conductors", Electronics and Communications in Japan, Part 1, vol. 88, pp. 20-31, 2005 https://doi.org/10.1002/ecja.20178
  8. D. R. Lee, J. D. Park, J. I. Choi, and N. Kim, "Analysis of near field for base station panel antenna(4${\times}$2 dipole array)", Journal of the Korean Institute of Electromagnectic Engineering and Science, vol. 15, no. 5, pp. 473-479, May 2004
  9. K. Fujimoto, Mobile Antenna Systems Handbook, 3rd Edition, Artech House, Section 4.4.3, pp. 195-203, London, 2008
  10. A. F. Feresidis, G. Goussetis, S. Wang, and J. Y. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas", IEEE Trans. on Antenna and Propagation, vol. 53, pp. 209-215, Jan. 2005. https://doi.org/10.1109/TAP.2004.840528
  11. A. Erentok, P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamateria rea-lization of an artificial magnetic conductor for antenna applications", IEEE Trans. on Antenna and Propagation, vol. 53, pp. 160-172, Jan. 2005 https://doi.org/10.1109/TAP.2004.840534
  12. D. Sivenpiper, "High-impedance electromagnetic surfaces", Ph. D. dissertation, Department of Electrical Engineering, Univ. California, Los Angeles, CA, Chapter 1, 1999
  13. D. Sivenpiper, L. Zhang, R. F. J. Broas, and N. G. Alexopolous, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. on Microwave Theory and Techniques, vol. 47, pp. 2059-2074, Aug. 1999 https://doi.org/10.1109/22.798001
  14. http://www.aceantenna.co.kr/
  15. F. Yang, Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna application", IEEE Trans. Antenna Propagation, vol. 51, no. 10, pp. 2691-2703, Oct. 2003 https://doi.org/10.1109/TAP.2003.817559
  16. H. Mosallaei, Y. Rahmat-Samii, "Broadband characterization of complex periodic EBG structures: An FDTD/prony technique based on the split-field approach", Electromagn., vol. 23, no. 2, pp. 135-151, Feb. 2003 https://doi.org/10.1080/02726340390159478

피인용 문헌

  1. Design of Compact Series-fed Dipole Pair Antenna with End-loaded Rectangular Patches vol.17, pp.10, 2013, https://doi.org/10.6109/jkiice.2013.17.10.2245