DOI QR코드

DOI QR Code

Smart Structural Health Monitoring Using Carbon Nanotube Polymer Composites

탄소나노튜브 고분자 복합체 기반 스마트 구조건전성 진단

  • 박영빈 (울산과학기술대학교 기계신소재공학부 기계공학) ;
  • ;
  • ;
  • 김상우 (울산과학기술대학교 기계신소재공학부기계공학 대학원)
  • Published : 2009.12.31

Abstract

This paper presents an experimental study on the piezoresistive behavior of nanocomposite strain sensors subjected to various loading modes and their capability to detect structural deformations and damages. The electrically conductive nanocomposites were fabricated in the form of a film using various types of thermoplastic polymers and multi-walled carbon nanotubes (MWNTs) at various loadings. In this study, the nanocomposite strain sensors were bonded to a substrate and subjected to tension, flexure, or compression. In tension and flexure, the resistivity change showed dependence on measurement direction, indicating that the sensors can be used for multi-directional strain sensing. In addition, the sensors exhibited a decreasing behavior in resistivity as the compressive load was applied, suggesting that they can be used for pressure sensing. This study demonstrates that the nanocomposite strain sensors can provide a pathway to affordable, effective, and versatile structural health monitoring.

탄소나노튜브 고분자 복합체는, 외력에 의한 변형에 따라 전기적 저항이 변화하는 피에조저항(piezoresistivity) 거동을 나타낸다. 피에조저항은 고분자 모재 내에서 탄소나노튜브가 형성하는 전기전도망(conductive network)의 변화에 의해서 발현된다. 피에조저항 낮은 탄소나노튜브 함유량에서 더 현저하게 나타난다. 탄소섬유, 카본블랙 등 타 탄소기반 소재에 비해 전기전도도와 길이 대 직경비(aspect ratio)가 월등히 우수하기 때문에, 낮은 탄소나노튜브의 함유량에서도 스트레인 센싱시스템을 구현할 수 있다. 본 연구에서는, 구조물에 부착 또는 임베드 시켜서 구조물의 건전성을 실시간을 진단할 수 있는 탄소나노튜브 고분자 복합체 기반 센싱시스템을 개발하였다. 센서는 열가소성 수지와 다중벽 탄소나노튜브를 사용하여 필름 형태로 제조되었으며, 센싱 성능은 나노복합체를 구조물에 부착한 후 인장, 굽힘, 압축 등의 다양한 형태의 하중을 가하면서 평가하였다.

Keywords

References

  1. 이상의, 박기연, 이원준, 김천곤, 한재흥, "다중벽 탄소나노튜브가 첨가된 평직 유리섬유/에폭시 복합재료의미세구조 및 전자기적 특성," 한국복합재료학회지, Vol. 19, No. 1, 2006, pp. 36-42
  2. 김진봉, 이상관, 김천곤, "전자파 흡수체를 위한 전도성 소재 로서의 탄소나노소재의 특성에 대한 연구," 한국복합재료학회지, Vol. 19, No. 5, 2006, pp. 28-33
  3. Pham G.T., Park Y.-B., Liang Z., Zhang C., and Wang B., "Processing and Modeling of Conductive Thermoplastic/ Carbon Nanotube Films for Strain Sensing," Composites Part B, Vol. 39, 2008, pp. 209-216 https://doi.org/10.1016/j.compositesb.2007.02.024
  4. Kang I., et al., "Introduction to Carbon Nanotube and Nanofiber Smart Materials," Composites Part B, Vol. 37, 2006, pp. 382-394 https://doi.org/10.1016/j.compositesb.2006.02.011
  5. Yang L. and Han H., "Electronic Structure of Deformed Carbon Nanotubes," Phys. Rev. Lett., Vol. 85, 2000, pp. 154-157 https://doi.org/10.1103/PhysRevLett.85.154
  6. Paulson S, Falvo M.R., Snider N., Helser A., Hudson T., Seeger A., Taylor R.M., Superfine R. and Washburn S., "In situ Resistance Measurements of Strained Carbon Nanotubes," Appl. Phys. Lett., Vol. 75, 1999, pp. 2936-2938 https://doi.org/10.1063/1.125193
  7. Kuzumakia T. and Mitsuda Y., "Dynamic Measurement of Electrical Conductivity of Carbon Nanotubes during Mechanical Deformation by Nanoprobe Manipulation in Transmission Electron Microscopy," Appl. Phys. Lett, Vol. 85, No. 7, 2004, pp. 1250-1252 https://doi.org/10.1063/1.1784536
  8. Dharap P., Li Z., Nagarajaiah S. and Barrera E., "Nanotube Film Based on SWNT for Macrostrain Sensing," Nanotechnology Journal, Vol. 15, No. 3, 2004, pp. 379-382 https://doi.org/10.1088/0957-4484/15/3/026
  9. Aneli N., Zaikov G.E., and Khananashvili L.M., "Effects of Mechanical Deformations on the Structurization and Electrical Conductivity of Electric Conducting Polymer Composites," J. of Appl. Polym. Sci., Vol. 74, 1999, pp. 601-621 https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3<601::AID-APP14>3.0.CO;2-K
  10. Flandin L., Chang A., Nazarenko S., Hiltner A., and BaerE., "Effect of Strain on the Properties of an Ethylene- Octene Elastomer with Conductive Carbon Fillers," J. of Appl. Polym. Sci., Vol. 76, 2000, pp. 894-905 https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<894::AID-APP16>3.0.CO;2-K
  11. Das N.C., Chaki T.K., and Khastgir D., "Effect of Axial Stretching on Electrical Resistivity of Short Carbon Fibre and Carbon Black Filled Conductive Rubber Composites," Polymer International, Vol. 51, 2002, pp. 156-163 https://doi.org/10.1002/pi.811
  12. Wang X. and Chung D.D.L., "Self-Monitoring of Fatigue Damage and Dynamic Strain in Carbon Fiber Polymer- Matrix Composite," Composites Part B, Vol. 29, 1998, pp. 63-73 https://doi.org/10.1016/S1359-8368(97)00014-0
  13. Gordon A.D., Wang S., and Chung D.D.L., "Piezoresistivity in Unidirectional Continuous Carbon Fiber Polymer-Matrix Composites: Single-Lamina Composite versus Two-Lamina Composite," Composite Interfaces, Vol. 11, 2004, pp. 95-103 https://doi.org/10.1163/156855404322681073
  14. Buldum A. and Lu J.P., "Contact Resistance between Carbon Nanotubes," Phys. Rev. B,Vol. 63, 2001, 161403 https://doi.org/10.1103/PhysRevB.63.161403
  15. Buia C., Buldum A., and Lu J.P., "Quantum Interference Effects in Electronic Transport through Nanotube Contacts," Phys. Rev. B, Vol. 67, 2003, 113409 https://doi.org/10.1103/PhysRevB.67.113409
  16. Simmons G.J., "Generalized Formula for Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film," J. Appl. Phys., Vol. 34, 1963, pp. 1793-1803 https://doi.org/10.1063/1.1702682
  17. Sheng P., Sichel E.K., and Gittleman J.L., "Fluctuation-Induced Tunneling Conduction in Carbon PolyvinylchlorideComposites," Phys. Rev. Lett., Vol. 40, No. 18, 1978, pp.1197-1200 https://doi.org/10.1103/PhysRevLett.40.1197
  18. Baughman R.H., Zakhidov A.A., de Heer W.A., "Carbon Nanotubes - the Route toward Applications," Science, Vol. 297, 2002, pp. 787-792 https://doi.org/10.1126/science.1060928
  19. Breuer O. and Sundararaj U., "Big Returns from Small Fibers: a Review of Polymer/Carbon Nanotube Composites," Polymer Composites, Vol. 25, No. 6, 2004, pp. 31-37 https://doi.org/10.1002/pc.20058
  20. Wang S. and Chung D.D.L.,"Self-Sensing of Flexural Strain and Damage in Carbon Fiber Polymer-Matrix Composite by Electrical Resistance Measurement," Carbon, Vol. 44, 2006, pp. 2739-2751 https://doi.org/10.1016/j.carbon.2006.03.034
  21. Wang D. and Chung D.D.L., "Comparative Evaluation of the Electrical Configurations for the Two-Dimensional Electric Potential Method of Damage Monitoring in Carbon Fiber Polymer-Matrix Composite," Smart Materials and Structures, Vol. 15, 2006, pp. 1332-1344 https://doi.org/10.1088/0964-1726/15/5/023
  22. Park J.M., Kim D.S., Lee J.R., andKim T.W., "Nondestructive Damage Sensitivity and Reinforcing Effect of Carbon Nanotube/ Epoxy Composites Using Electro-Micromechanical Technique," Material Science and Engineering, Vol. 23(C), 2003, pp. 971-975 https://doi.org/10.1016/j.msec.2003.09.131
  23. Thostenson E.T. and Chou T.-W., "Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self-Healing," Adv. Mater., Vol. 18, 2006, pp. 2837-2841 https://doi.org/10.1002/adma.200600977
  24. Thostenson E.T. and Chou T.-W., "Real-Time in situ Sensing of Damage Evolution in Advanced Fiber Composites Using Carbon Nanotube Networks," Nanotechnology, Vol. 19, 2008, 215713 https://doi.org/10.1088/0957-4484/19/21/215713
  25. Gao L., Thostenson E.T., Zhang Z., Chou T.-W., "Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes," Adv. Func. Mater., Vol. 29, 2009, pp. 123-130 https://doi.org/10.1002/adfm.200800865
  26. 왕작가, 공조엘, 박종만, 이우일, 박종규, "미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사면 시편의 계면특성," 한국복합재료학회지, Vol. 22, No. 5, 2009, pp. 8-14