Effect of Diamine Bridges Using L-lysine in Glutaraldehyde Treated Porcine Pericardium

글루타르알데하이드 고정 돼지 심낭에서 L-lysine를 이용한 Diamine Bridge 효과

  • Kim, Kwan-Chang (Department of Thoracic and Cardiovascular Surgery, School of Medicine, Ewha Womans University) ;
  • Choi, Yun-Kyung (Department of Thoracic and Cardiovascular Surgery, School of Medicine, Ewha Womans University) ;
  • Kim, Soo-Hwan (Department of Thoracic and Cardiovascular Surgery, Seoul National University College of medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University College of medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center)
  • 김관창 (이화여자대학교 의학전문대학원 흉부외과학교실) ;
  • 최윤경 (이화여자대학교 의학전문대학원 흉부외과학교실) ;
  • 김수환 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학연구소, 바이오 이종장기개발사업단) ;
  • 김용진 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학연구소, 바이오 이종장기개발사업단)
  • Published : 2009.04.05

Abstract

Background: Various studies and experimental trials have been done to develop bioprosthetic devices to treat complex congenital heart disease due to the limited usage of homograft tissue. The purpose of the present study was to evaluate the effect of diamine bridges with using L-lysine, as compared with using ethanol. Material and Method: Porcine pericardium was fixed at 0.625% GA (commercial fixation). An interim step of ethanol (80%; 1 day at room temperature) or L-lysine (0.1 M; 2 days at $37^{\circ}C$) was followed by completion of the GA fixation (2 days at $4^{\circ}C$ and 7 days at room temperature). The tensile strength and thickness of the porcine percardium were measured, respectively. The treated pericardiums were implanted subcutaneously into three-week old Long-Evans rats for 8 weeks. The calcium content of the implants was assessed by atomic absorption spectroscopy and the histology. Result: Ethanol pretreatment ($13.6{\pm}10.0ug/mg$, p=0.008), L-lysine pretreatment ($15.3{\pm}1.0 ug/mg$, p=0.002), and both treatment ($16.1{\pm}11.1ug/mg$, p=0.012) significantly inhibited calcification, as compared with the controls $(51.2{\pm}8.5ug/mg)$. L-lysine pretreatment ($0.18{\pm}0.02mm,\;1.20{\pm}0.30kg$ f/5 mm) significantly increased the thickness and tensile strength, as compared with ethanol pretreatment ($0.13{\pm}0.03mm,\;0.85{\pm}0.36$ 1.0 kg f/5 mm) (p<0.01, p=0.035). Conclusion: The diamine bridges using L-lysine seemed to decrease the calcification of porcine pericardium fixed with glutaraldehyde, and this was comparable with Ethanol. Additionally, it seemed to enhance the thickness and tensile strength.

배경: 폐동맥 판막 협착 혹은 형성 부전을 동반한 여러 선천성 심장기형의 수술적 치료를 위하여, 다양한 종류의 우심실-폐동맥간 도관이 사용되었다. 장기 성적이 우수한 냉동동종 이식편(cryopreserved homograft)의 공급의 제한으로 이를 대체할 이종 조직 이식편의 석회화 방지를 위한 효과적인 기법의 확립이 필요하다. 본 연구에서는 L-lysine을 이용한 diamine bridge의 항석회화 효과를 Ethanol과 비교하여 알아보고자 하였다. 대상 및 방법: 0.625% glutaraldehyde ($4^{\circ}C$에서 2일, 상온에서 7일간) 고정한 돼지 심낭을 80% Ethanol (상온에서 1일), 혹은 0.1M L-lysine ($37^{\circ}C$에서 2일)로 처리 한 후 각각의 두께(thickness)와 장력(tensile strength)을 측정하였다. 각각의 항석회화 처리한 돼지 심낭을 생후 3주된 쥐의 피하조직에 이식하고 8주 뒤 칼슘을 정량하고 조직학적 소견을 관찰하였다. 결과: 0.625% glutaraldehyde 고정만 시행한 군$(51.2{\pm}8.5ug/mg)$과 비교하여 0.625% glutaraldehyde 고정 후에 80% Ethanol 처리한 군($13.6{\pm}10.0ug/mg$, p=0.008)과, 0.625% glutaraldehyde 고정 후에 L-lysine 처리한 군($15.3{\pm}1.0ug/mg$, p=0.002), 그리고 0.625% glutaraldehyde 고정 후에 80% Ethanol과 L-lysine 처리한 군($16.1{\pm}11.1ug/mg$, p=0.012)은 통계적으로 의미 있게 칼슘의 침착량이 적었다. 0.625% glutaraldehyde 고정 후에 80% Ethanol 처리한 군의 두께와 장력은 각각 $0.18{\pm}0.02mm,\;1.20{\pm}0.30kg$중/5mm로 0.625% glutaraldehyde 고정 후에 L-lysine 처리한 군의 $0.13{\pm}0.03mm$, $0.85{\pm}0.36$ 1.0kg 중/5mm 보다 증가되어 있었다(p<0.01, p=0.035). 결론: L-lysine을 이용한 diamine bridge는 Ethanol과 비교하여 비슷한 항석회화 효과를 보여 주었으며 Cross-link를 증가시켜 이종 이식편의 두께와 장력을 증가시켜 주는 효과가 있었다.

Keywords

References

  1. amieson WRE, Rosado LJ, Munro AI, et al. Carpentier Edwards standard porcine bioprosthesis: primary tissue failure (structural valve deterioration) by age groups. Ann Thorac Surg 1988;46:155-62 https://doi.org/10.1016/S0003-4975(10)65888-2
  2. David TE, Ivanov J. Is degenerative calcification of the native aortic valve similar to calcification of bioprosthetic heart valves? J Thorac Cardiovasc Surg 2003;126:939-41 https://doi.org/10.1016/S0022-5223(03)00731-1
  3. Human P, Zilla P. Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg 2001;71(Suppl):S385-8Human P, Zilla P. Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg 2001;71(Suppl):S385-8 https://doi.org/10.1016/S0003-4975(01)02492-4
  4. Maranto A , Schoen F. Alkaline phosphatase activity of glutaraldehyde-treated bovine pericardium used in bioprosthetic cardiac valves. Circ Res 1988;63:844-8 https://doi.org/10.1161/01.RES.63.4.844
  5. Zilla P, Weissenstein C, Bracher M, et al. High glutaraldehyde concentrations reduce rather than increase the calcification of aortic wall tissue. J Heart Valve Dis 1997;6:502-9
  6. Humana P, Bezuidenhouta D, Torriannib M, Hendriksc M, Zilla P. Optimization of diamine bridges in glutaraldehyde treated bioprosthetic aortic wall tissue. Biomaterials 2002; 23:2099-103 https://doi.org/10.1016/S0142-9612(01)00302-7
  7. Lee CH, Vyavahare N, Zand R, et al. Inhibition of aortic wall calcification in bioprosthetic heart valves by ethanol pretreatment: biochemical and biophysical mechanisms. J Biomed Mater Res 1998;42:30-7 https://doi.org/10.1002/(SICI)1097-4636(199810)42:1<30::AID-JBM5>3.0.CO;2-P
  8. Kim KC, Lee C, Choi CH, et al. Development of porcine pericardial heterograft for clinical application (tensile strength-thickness). Korean J Thorac Cardiovasc Surg 2008; 41:170-6
  9. Neethling WM, Hodge AJ, Clode P, Glancy R. A multi-step approach in anti-calcification of glutaraldehyde-preserved bovine pericardium. J Cardiovasc Surg (Torino) 2006;47:711-8
  10. Garcia Paez JM, Jorge-Herrero E, Carrera A, et al. Chemical treatment and tissue selection: factors that influence the mechanical behaviour of porcine pericardium. Biomaterials 2001;22:2759-67 https://doi.org/10.1016/S0142-9612(01)00019-9
  11. Ross DN, Somerville J. Correction of pulmonary atresia with a homograft aortic valve. Lancet 1966;288:1446-7 https://doi.org/10.1016/S0140-6736(66)90600-3
  12. Ross DN. Replacement of the aortic and mitral valves with a pulmonary autograft. Lancet 1967;290:956-8 https://doi.org/10.1016/S0140-6736(67)90794-5
  13. Merin G, McGoon DC. Reoperation after insertion of aortic homograft as a right ventricular outflow tract. Ann Thorac Surg 1973;16:122-6 https://doi.org/10.1016/S0003-4975(10)65826-2
  14. Bowman FO Jr, Hancock WD, Malm JR. A valve-containing Dacron prosthesis: its use in restoring pulmonary arteryright ventricular continuity. Arch Surg 1973;107:724-8 https://doi.org/10.1001/archsurg.1973.01350230076015
  15. Agarwal KC, Edwards WD, Feldt RH, et al. Clinicopathological correlates of obstructed right-sided porcine-valved extracardiac conduits. J Thorac Cardiovasc Surg 1981;81: 591-601
  16. Jonas RA, Freed MD, Mayer JE Jr, et al. Long term follow- up of patients with synthetic right heart conduits. Circulation 1985;72(Suppl 2):77-83
  17. Park SS, Kim WH, Kim KH, et al. Removal of α-Gal epitopes in aortic valve and pericardium of pig using green coffee beanα-Galactosidase. Korean J Thorac Cardiovasc Surg 2008;41:12-24
  18. Kwak JG, Yoo JS, Kim YJ, et al. Twenty-one year experience with right ventricle to pulmonary artery conduit interposition. Korean J Thorac Cardiovasc Surg 2008;41:417-22
  19. Schoen FJ. Future directions in tissue heart valves: impact of recent insights from biology and pathology. J Heart Valve Dis 1999;8:350-8