DOI QR코드

DOI QR Code

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS) ;
  • Jin, Hu-Jie (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS) ;
  • Park, Choon-Bae (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS) ;
  • Hoang, Geun C. (Department of Semiconductor and Display, Wonkwang University, WRISS)
  • 발행 : 2009.02.28

초록

N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

키워드

참고문헌

  1. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, B. Liu, Y. Che, L. P. Zhu, and B. H. Zhao, J. Mater. Sci. 10, 1419 (1995) https://doi.org/10.1007/BF00540832
  2. J. Y. Huang, Z. Z. Ye, H. H. Chen, B. H. Zhao, and L. Wang, J. Mater. Sci. 22, 249 (2003)
  3. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phy. 98, 041301 (2005) https://doi.org/10.1063/1.1992666
  4. Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, and J. Y. Huang, J. Crystal Growth 253, 259 (2003) https://doi.org/10.1016/S0022-0248(03)01007-8
  5. C. H. Park, S. B. Zhang, and S. H. Wei, Phy. Rev. B, 66, 073202 (2002) https://doi.org/10.1103/PhysRevB.66.073202
  6. J. Z. Wang, V. Sallet, F. Jomard, A. M. Botelho do Rego, E. Elamurugu, R. Martins, and E. Fortunato, Thin Solid Films 515, 8781 (2007)
  7. H.-J. Jin, S.-H. Oh, and C.-B. Park, Appl. Surf. Sci. 254, 2207 (2008) https://doi.org/10.1016/j.apsusc.2007.08.052
  8. H. M. Zhang, Y. Cui, Y. G. Men, and X. S. Liu, J. Lumin, 121, 601 (2006) https://doi.org/10.1016/j.jlumin.2005.12.056
  9. H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, Mater. Sci. Eng. 8, 102, 313 (2003)
  10. H.-J. Jin, S.-J. So, and C.-B. Park, J. of KIEEME(in Korean) 20, 202 (2007)

피인용 문헌

  1. First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO vol.99, pp.11, 2011, https://doi.org/10.1063/1.3638460
  2. Oxygen rich p-type ZnO thin films using wet chemical route with enhanced carrier concentration by temperature-dependent tuning of acceptor defects vol.110, pp.9, 2011, https://doi.org/10.1063/1.3660284
  3. Electrical and chemical analysis of zinc oxide interfaces with high dielectric constant barium tantalate and aluminum oxide in metal-insulator-semiconductor structures fabricated at Low temperatures vol.520, pp.1, 2011, https://doi.org/10.1016/j.tsf.2011.06.071
  4. X-ray photoelectron spectroscopy study of highly-doped ZnO:Al,N films grown at O-rich conditions vol.722, 2017, https://doi.org/10.1016/j.jallcom.2017.06.169
  5. Ultra-violet photo-response characteristics of p -Si/ i -SiO 2 / n -ZnO heterojunctions based on hydrothermal ZnO nanorods vol.66, 2017, https://doi.org/10.1016/j.mssp.2017.04.031
  6. Effect of energetic electron beam treatment on Ga-doped ZnO thin films vol.14, pp.6, 2014, https://doi.org/10.1016/j.cap.2014.03.022
  7. Effect of Electric Bias on the Deposition Behavior of ZnO Nanostructures in the Chemical Vapor Deposition Process vol.119, pp.44, 2015, https://doi.org/10.1021/acs.jpcc.5b06796