Robust Finite-Time Stabilization for an Uncertain Nonlinear System

불확실한 비선형 시스템에 대한 강인 유한 시간 안정화

  • Seo, Sang-Bo (ASRI, School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Shin, Hyung-Bo (ASRI, School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Seo, Jin-Heon (ASRI, School of Electrical Engineering and Computer Science, Seoul National University)
  • 서상보 (서울대학교 전기컴퓨터공학부) ;
  • 심형보 (서울대학교 전기컴퓨터공학부) ;
  • 서진헌 (서울대학교 전기컴퓨터공학부)
  • Published : 2009.03.25

Abstract

In this paper we consider the problem of global finite-time stabilization for a class of uncertain nonlinear systems which include uncertainties. The uncertainties are time-varying disturbances or parameters belong to a known compact set. The proposed design method is based on backstepping and dynamic exponent scaling using an augmented dynamics, from which, a dynamic smooth feedback controller is derived. The finite-time stability of the closed-loop system and boundedness of the controller are preyed by the finite-time Lyapunov stability theory and a new notion 'degree indicator'.

본 논문에서는 불확실성을 가지는 비선형 시스템에 대한 강인 유한 시간 안정화 문제를 고려한다. 불확실성은 시변 외란 혹은 이미 알고 있는 옹골 집합에 포함된 파라미터들이다. 제안된 설계기법은 역진기법(backstepping)과 추가된 다이나믹스를 이용한 다이나믹 지수 보정법(dynamic exponent scaling)에 기반을 두고 있으며, 이로부터 다이나믹 스무스 궤환 제어기(dynamic smooth feedback controller)가 유도된다. 페루프 시스템의 유한 시간 안정과 제어기의 유한함은 각각 유한 시간 안정에 관한 리아푸노프 안정 이론과 새로운 개념인 '차수 지표자(degree indicator)'를 이용하여 증명된다.

Keywords

References

  1. M. Athans and P. I. Falb, Optimal Control: An Introduction to the Theory and Its applications, New York: McGraw-Hill, 1966
  2. V. T. Haimo,'Finite-time controllers,' SIAM J. Control Optim., vol. 24, no. 4, pp. 760-770, 1986 https://doi.org/10.1137/0324047
  3. S. P. Bhat and D. S. Bernstein, 'Lyapunov analysis of finite-time differential equations,' in Proc. of American Control Conf., pp. 1831-1832, Seatle, June 1995
  4. S. P. Bhat and D. S. Bernstein, 'Continuous finite-time stabilization of the translational rotational double integrators,' IEEE Trans. Automat. Contr., vol. 43, no. 5, pp. 678-682, 1998 https://doi.org/10.1109/9.668834
  5. S. P. Bhat and D. S. Bernstein, 'Finite-time stability of continuous autonomous systems,' SIAM J. Control Optim., vol. 38, no. 3, pp. 751-766, 2000 https://doi.org/10.1137/S0363012997321358
  6. S. P. Bhat and D. S. Bernstein, 'Geometric homogeneity with applications to finite-time stability,' Math. Contr. Signal Systems, vol. 17, pp. 101-127, 2005 https://doi.org/10.1007/s00498-005-0151-x
  7. Y. Hong, J. Huang, and Y. Wu, 'On an output feedback finite-time stabilization problem,' IEEE Trans. Automat. Contr., vol. 46, no. 2, pp. 305-309, 2001 https://doi.org/10.1109/9.905699
  8. Y. Hong, 'Finite-time stabilization and stability of a class of controllable systems,' Syst. and Contr. Letters, vol. 46, pp. 231-236, 2002 https://doi.org/10.1016/S0167-6911(02)00119-6
  9. X. Huang, W. Lin, and B. Yang, 'Global finite-time stabilization of a class of uncertain nonlinear systems,' Automatica, vol. 41, pp. 881-888, 2005 https://doi.org/10.1016/j.automatica.2004.11.036
  10. J. Li and C. Qian, 'Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems,' IEEE Trans. Automat. Contr., vol. 51, pp. 879-884, 2006 https://doi.org/10.1109/TAC.2006.874991
  11. C. Qian and J. Li, 'Global finite-time stabilization by output feedback for planar systems without observable linearization,' IEEE Trans. Automat. Contr., vol. 50, pp. 885-890, 2005 https://doi.org/10.1109/TAC.2005.849253
  12. C. Qian and J. Li, 'Global output stabilization of upper-triangular nonlinear systems using a homogeneous domination approach,' Int. J. Robust and Nonlinear Contr., vol. 16, pp. 441-463, 2006 https://doi.org/10.1002/rnc.1074
  13. J. Back, S. G. Cheong, H. Shim, and J. H. Seo, 'Nonsmooth feedback stabilizer for strict- feedback nonlinear systems that may not be linearizable at the origin,' Sys. and Contr. Letters, vol. 56, pp. 742-752, 2007 https://doi.org/10.1016/j.sysconle.2007.04.009
  14. S. Seo, H. Shim, and J. H. Seo, 'Global finite- time stabilization of a nonlinear system using dynamic exponent scaling,' in Proc. of IEEE Conf. on Decision and Control, pp. 3805-3810, Cancun, Mexico, Dec., 2008
  15. R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design, Birkhauser, 1996
  16. H. K. Khalil, Nonlinear systems, NJ: Prentice- Hall, 3rd edition, 2002