참고문헌
- Basheer, S., K. Mogi, and M. Nakajima. 1995. Surfactantmodified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol. Bioeng. 45: 187-195 https://doi.org/10.1002/bit.260450302
- Chang, C. S. and S. W. Tsai. 1997. A facile enzymatic process for the preparation of (S)-naproxen ester prodrug in organic solvents. Enzyme Microb. Technol. 20: 635-639 https://doi.org/10.1016/S0141-0229(96)00222-0
- Chi, Y. M., K. Nakamura, and T. Yano. 1988. Enzymic interesterification in supercritical carbon dioxide. Agric. Biol. Chem. 52: 1541-1550 https://doi.org/10.1271/bbb1961.52.1541
- Chiang, K. T. 2007. Modeling and optimization of designing parameters for a parallel-plain fin heat sink with confined impinging jet using the response surface methodology. Appl. Therm. Eng. 27: 2473-2482 https://doi.org/10.1016/j.applthermaleng.2007.02.004
- Cui, Y.-M., D.-Z. Wei, and J.-T. Yu. 1997. Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen. Biotechnol. Lett. 19: 865-868 https://doi.org/10.1023/A:1018333503317
- Dominguez, A. P. M., D. Bizani, F. Cladera-Olivera, and A. Brandelli. 2007. Cerein 8A production in soybean protein using response surface methodology. Biochem. Eng. J. 35: 238-243 https://doi.org/10.1016/j.bej.2007.01.019
- Franck, E. U. and R. Deul. 1978. Dielectric behavior of methanol and related polar fluids at high pressures and temperatures. Faraday Discuss. Chem. Soc. 66: 191-198 https://doi.org/10.1039/dc9786600191
- Goldberg, M., D. Thomas, and M. D. Legoy. 1990. The control of lipase-catalysed transesterification and esterification rates. Effects of substrate polarity, water activity and water molecules on enzyme activity. Eur. J. Biochem. 190: 603-609 https://doi.org/10.1111/j.1432-1033.1990.tb15615.x
- Hayball, P. J. 1996. Chirality and nonsteroidal anti-inflammatory drugs. Drugs 52: 47-58
- Iso, M., B. Chen, M. Eguchi, T. Kudo, and S. Shrestha. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B Enzym. 16: 53-58 https://doi.org/10.1016/S1381-1177(01)00045-5
- Junco, S., T. Casimiro, N. Ribeiro, M. D. Ponte, and H. M. Marques. 2002. Optimisation of supercritical carbon dioxide systems for complexation of naproxen: Beta-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44: 69-73 https://doi.org/10.1023/A:1023028815180
- Kamat, S. V., E. J. Beckman, and A. J. Russell. 1995. Enzyme activity in supercritical fluids. Crit. Rev. Biotechnol. 15: 41-71 https://doi.org/10.3109/07388559509150531
- Kwon, C. H., D. Y. Shin, J. H. Lee, S. W. Kim, and J. W. Kang. 2007. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B. J. Microbiol. Biotechnol. 17: 1098-1105
- Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim. 2005. Optimization of culture medium and conditions for neofructooligosaccharides production by Penicillium citrinum. Eur. Food Res. Technol. 221: 639-644 https://doi.org/10.1007/s00217-005-0070-6
- Mundra, P., K. Desai, and S. S. Lele. 2007. Application of response surface methodology to cell immobilization for the production of palatinose. Bioresour. Technol. 98: 2892-2896 https://doi.org/10.1016/j.biortech.2006.09.046
- Nnakamura, K., Y. M. Chi, Y. Yamada, and T. Yano. 1986. Lipase activity and stability in supercritical carbon dioxide. Chem. Eng. Commun. 45: 207-212 https://doi.org/10.1080/00986448608911384
- Ranucci, E., L. Sartore, I. Peroni, R. Latini, R. Bemasconi, and P. Ferruti. 1994. Pharmacokinetic results on naproxen prodrugs based on poly(ethyleneglycol)s. J. Biomater. Sci. Polym. Ed. 6: 141-147 https://doi.org/10.1163/156856294X00275
- Rocha, J., M. Gil, and F. Garcia. 1999. Optimisation of the enzymatic synthesis of noctyl oleate with immobilised lipase in the absence of solvents. J. Chem. Technol. Biotechnol. 74: 607-612 https://doi.org/10.1002/(SICI)1097-4660(199907)74:7<607::AID-JCTB74>3.0.CO;2-N
- Shanbhag, V. R., A. M. Crider, R. Gokhale, A. Harpalani, and R. M. Dick. 1992. Ester and amide prodrugs of ibuprofen and naproxen: Synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J. Pharm. Sci. 81: 149-154 https://doi.org/10.1002/jps.2600810210
- Shang, C. S. and C. S. Hsu. 2003. Lipase-catalyzed enantioselective esterification of (S)-naproxen hydroxyalkyl ester in organic media. Biotechnol. Lett. 25: 413-416 https://doi.org/10.1023/A:1022948009889
- Shieh, C. J., H. F. Liao, and C. C. Lee. 2003. Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technol. 88: 103-106 https://doi.org/10.1016/S0960-8524(02)00292-4
- Sunitha, K., J. K. Lee, and T. K. Oh. 1999. Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess. Biosyst. Eng. 21: 477-481 https://doi.org/10.1007/PL00009086
- Tammara, V. K., M. M. Narurkar, A. M. Crider, and M. A. Khan. 1993. Synthesis and evaluation of morpholinoalkyl ester prodrugs of indomethacin and naproxen. Pharm. Res. 10: 1191-1199 https://doi.org/10.1023/A:1018976520391
- Tsai, S. W., S. F. Lin, and C. S. Chang. 1999. Lipase-catalyzed enantioselective esterification of S(+)-naproxen ester prodrugs in cyclohexane. J. Chem. Technol. Biotechnol. 74: 751-758 https://doi.org/10.1002/(SICI)1097-4660(199908)74:8<751::AID-JCTB86>3.0.CO;2-M
-
Wu, J.-Y. and M.-T. Liang. 1999. Enhancement of enantioselectivity by altering alcohol concentration for esterification in supercritical
$CO_2$ . J. Chem. Eng. Japan 32: 338-340 https://doi.org/10.1252/jcej.32.338 - Yasmin, T., T. Jiang, B. Han, J. Zhang, and X. Ma. 2006. Transesterification reaction catalysed by Novozym 435 in supercritical carbon dioxide. J. Mol. Catal. B Enzym. 41: 27-31 https://doi.org/10.1016/j.molcatb.2006.04.001
피인용 문헌
- Effect of reaction rate on converted products from wheat germ oil by immobilized lipase ethanolysis vol.22, pp.2, 2009, https://doi.org/10.1007/s10068-013-0080-2
- Kinetic Resolution of Profens by Enantioselective Esterification Catalyzed by Candida antarctica and Candida rugosa Lipases vol.26, pp.10, 2014, https://doi.org/10.1002/chir.22362
- Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli vol.25, pp.6, 2009, https://doi.org/10.4014/jmb.1411.11050
- A membrane‐bound esterase PA2949 from Pseudomonas aeruginosa is expressed and purified from Escherichia coli vol.6, pp.5, 2009, https://doi.org/10.1002/2211-5463.12061
- Esterification of Dicarboxylic Acids with 2-Ethylhexanol under Supercritical Conditions vol.11, pp.7, 2017, https://doi.org/10.1134/s1990793117070119
- Expression and Activity of the BioH Esterase of Biotin Synthesis is Independent of Genome Context vol.7, pp.None, 2009, https://doi.org/10.1038/s41598-017-01490-0
- Metabolic engineering of Escherichia coli for secretory production of free haem vol.1, pp.9, 2009, https://doi.org/10.1038/s41929-018-0126-1
- Advances in microbial production of medium-chain dicarboxylic acids for nylon materials vol.5, pp.2, 2009, https://doi.org/10.1039/c9re00338j