References
- Arca, P., G. Reguera, and C. Hardisson. 1997. Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicenter survey. J. Antimicrob. Chemother. 40: 393-399 https://doi.org/10.1093/jac/40.3.393
- Barbosa, M. D., G. Yang, J. Fang, M. G. Kurilla, and D. L. Pompliano. 2002. Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob. Agents Chemother. 46: 943-946 https://doi.org/10.1128/AAC.46.4.943-946.2002
- Baskin, D. S., H. Ngo, and V. V. Didenko. 2003. Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol. Sci. 74: 361-368 https://doi.org/10.1093/toxsci/kfg126
- Baum, E. Z., D. A. Montenegro, L. Licata, I. Turchi, G. C. Webb, B. D. Foleno, and K. Buch. 2001. Identification and characterization of a new inhibitor of the Escherichia coli MurA enzyme. Antimicrob. Agents Chemother. 45: 3182-3188 https://doi.org/10.1128/AAC.45.11.3182-3188.2001
- Bernat, B. A., L. T. Laughlin, and R. N. Armstrong. 1997. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36: 3050-3055 https://doi.org/10.1021/bi963172a
- Brown, E. D., E. I. Vivas, C. T. Walsh, and R. Kolter. 1995. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 177: 4194-4197
- Bugg. T. D. and C. T. Walsh. 1992. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: Enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep. 9: 199-215 https://doi.org/10.1039/np9920900199
- Canetti, G., W. Fox, A. Khomenko, H. T. Mahler, N. K. Menon, D. A. Mitchison, N. Rist, and N. A. Smelev. 1969. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programs. Bull. World Health Organ. 41: 21-43
- Canetti, G., S. Froman, J. Grosset, P. Hauduroy, M. Langerova, H. T. Mahler, G. Meissner, D. A. Mitchison, and L. Sula. 1963. Mycobacteria laboratory methods for testing drug sensitivity and resistance. Bull. World Health Organ. 29: 565-578
- Clinical and Laboratory Standards Institute. 2006. Performance Standards for Antimicrobial Susceptibility Testing. Sixteenth Informational Supplement M100-S16, Wayne, Pa
- Du, W., J. R. Brown, D. R. Sylvester, J. Huang, A. F. Chalker, C. Y. So, D. J. Holmes, D. J. Payne, and N. G. Wallis. 2000. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J. Bacteriol. 182: 4146-4152 https://doi.org/10.1128/JB.182.15.4146-4152.2000
- Eschenburg, S., M. Priestman, and E. Schonbrunn. 2005. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J. Biol. Chem. 280: 3757-3763 https://doi.org/10.1074/jbc.M411325200
- Horii, T., T. Kimura, K. Sato, K. Shibayama, and M. Ohta. 1999. Emergence of fosfomycin-resistant isolates of Shiga-like toxinproducing Escherichia coli O26. Antimicrob. Agents Chemother. 43: 789-793
- Kahan, F. M., J. S. Kahan, P. J. Cassidy, and H. Kropp. 1974. Mechanism of action of fosfomycin (phosphonomycin). Ann. N. Y. Acad. Sci. 235: 364-386 https://doi.org/10.1111/j.1749-6632.1974.tb43277.x
- Kim, D. H., W. J. Lees, K. E. Kempsell, W. S. Lane, K. Duncan, and C. T. Walsh. 1996. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35: 4923-4928 https://doi.org/10.1021/bi952937w
- Marquardt, J. L., E. D. Brown, W. S. Lane, T. M. Haley, Y. Ichikawa, C.-H. Wong, and C. T. Walsh. 1994. Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNac enolpyruvyl transferase by the antibiotic fosfomycin. Biochemistry 33: 10646-10651 https://doi.org/10.1021/bi00201a011
- Marquardt, J. L., D. A. Siegele, R. Kolter, and C. T. Walsh. 1992. Cloning and sequencing of Escherichia coli mreZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174: 5748-5752
- Masumoto, H., R. Kissner, W. H. Koppenol, and H. Sies. 1996. Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Lett. 398: 179-182 https://doi.org/10.1016/S0014-5793(96)01237-9
- Molina-Lopez, J., F. Sanschagrin, and R. C. Levesque. 2006. A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: The first committed step in peptidoglycan biosynthesis. Peptides 27: 3115-3121 https://doi.org/10.1016/j.peptides.2006.08.023
- Nozawa, R., T. Yokoda, and T. Fujimoto. 1989. Susceptibility of methicillin-resistant Staphylococcus aureus to the seleniumcontaining compound 2-phenyl-1,2-benzoisoselenazol-3(2H)-one (PZ51). Antimicrob. Agents Chemother. 33: 1388-1390 https://doi.org/10.1128/AAC.33.8.1388
- Riddles, P. W., R. L. Blakeley, and B. Zerner. 1979. Elleman's reagent: 5,5' Dithiobis (2-nitrobenzoic acid) - a reexamination. Anal. Biochem. 94: 75-81 https://doi.org/10.1016/0003-2697(79)90792-9
- Schewe, T. 1995. Molecular actions of ebselen-an antiinflammatory antioxidant. Gen. Pharmacol. 26: 1153-1169 https://doi.org/10.1016/0306-3623(95)00003-J
- Schonbrunn, E., S. Schenburg, K. Luger, W. Kabsch, and N. Amrhein. 2000. Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc. Natl. Acad. Sci. U.S.A. 97: 6345-6349 https://doi.org/10.1073/pnas.120120397
- Schonbrunn, E., D. I. Svergun, N. Amrhein, and M. H. J. Koch. 1998. Studies on the conformational changes in the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamine enolpyruvyltransferase (MurA). Eur. J. Biochem. 253: 406-412 https://doi.org/10.1046/j.1432-1327.1998.2530406.x
- Sharma, V. K., J. S. Aulakh, and A. K. Malik. 2003. Thiram: Degradation, applications and analytical methods. J. Environ. Monit. 5: 717-723 https://doi.org/10.1039/b304710e
- Skarzynski, T., A. Mistry, A. Wonacott, S. E. Hutchinson, V. A. Kelly, and K. Duncan. 1996. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-Nacetylglucosamine and the drug fosfomycin. Structure 4: 1465-1474 https://doi.org/10.1016/S0969-2126(96)00153-0
- Yoon, H. J., M. J. Ku, H. J. Ahn, B. I. Lee, B. Mikami, and S. W. Suh. 2005. Crystallization and preliminary X-ray crystallographic analysis of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDP-Nacetylglucosamine and fosfomycin. Mol. Cells 19: 398-401
- Yoon, H. J., S. J. Lee, B. Mikami, H. J. Park, J. Yoo, and S. W. Suh. 2008. Crystal structure of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenza in complex with DSP-N-acetylglucosamine and fosfomycin. Proteins 71: 1032-1037 https://doi.org/10.1002/prot.21959
Cited by
- Peptidoglycan biosynthesis machinery: A rich source of drug targets vol.31, pp.4, 2009, https://doi.org/10.3109/07388551.2010.525498
- Kinetic Properties of Wild-type and C117D Mutant UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae vol.32, pp.8, 2009, https://doi.org/10.5012/bkcs.2011.32.8.2549
- UDP-N-acetylglucosamine enolpyruvyl transferase as a potential target for antibacterial chemotherapy: recent developments vol.92, pp.2, 2011, https://doi.org/10.1007/s00253-011-3512-z
- Potential therapeutic drug target identification in Community Acquired-Methicillin Resistant Staphylococcus aureus (CA-MRSA) using computational analysis vol.8, pp.14, 2009, https://doi.org/10.6026/97320630008664
- Synthesis and Anticancer Activity of 5-(1,2-Diselenolan-3-Yl)pentanoic Acid and its Derivatives vol.188, pp.10, 2009, https://doi.org/10.1080/10426507.2013.765425
- Identification of Novel Irreversible Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae vol.23, pp.3, 2013, https://doi.org/10.4014/jmb.1210.10053
- Synthesis of Some Monoselenolipoic Acid Derivatives and Their Biological Evaluation as Anticancer Agents vol.37, pp.5, 2009, https://doi.org/10.3184/174751913x13664642709897
- Resistance to antibiotics targeted to the bacterial cell wall : The Bacterial Cell Wall as a Target for Antibiotics vol.23, pp.3, 2009, https://doi.org/10.1002/pro.2414
- Synthetic Approaches to Organoselenium Derivatives with Antimicrobial and Anti-Biofilm Activity vol.16, pp.6, 2009, https://doi.org/10.2174/1570193x16666181227111038
- Analysis of xanthyletin and secondary metabolites from Pseudomonas stutzeri ST1302 and Klebsiella pneumoniae ST2501 against Pythium insidiosum vol.19, pp.None, 2009, https://doi.org/10.1186/s12866-019-1452-4
- Catalytic Mechanism and Covalent Inhibition of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): Implications to the Design of Novel Antibacterials vol.59, pp.12, 2009, https://doi.org/10.1021/acs.jcim.9b00691
- Antibacterial Agents Targeting the Bacterial Cell Wall vol.27, pp.None, 2009, https://doi.org/10.2174/0929867327666200128103653