DOI QR코드

DOI QR Code

Inhibitory Mechanism of Novel Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase from Haemophilus influenzae

  • Jin, Bong-Suk (Department of Chemistry, Kookmin University) ;
  • Han, Seong-Gu (Department of Chemistry, Kookmin University) ;
  • Lee, Won-Kyu (Department of Chemistry, Kookmin University) ;
  • Ryoo, Sung-Weon (Department of Microbiology, Korean Institute of Tuberculosis) ;
  • Lee, Sang-Jae (School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Suh, Se-Won (School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Yu, Yeon-Gyu (Department of Chemistry, Kookmin University)
  • Published : 2009.12.31

Abstract

Bacterial UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first step of bacterial cell wall synthesis. We identified thimerosal, thiram, and ebselen as effective inhibitors of Haemophilus influenzae MurA by screening a chemical library that consisted of a wide range of bioactive compounds. When MurA was preincubated with these inhibitors, their 50% inhibitory concentrations ($IC_{50}s$) were found to range from 0.1 to $0.7\;{\mu}M$. In particular, thimerosal suppressed the growth of several different Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium at a concentration range of $1-2\;{\mu}g/ml$. These inhibitors covalently modified the cysteine residue near the active site of MurA. This modification changed the open conformation of MurA to a more closed configuration, which may have prevented the necessary conformational change from occurring during the enzyme reaction.

Keywords

References

  1. Arca, P., G. Reguera, and C. Hardisson. 1997. Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicenter survey. J. Antimicrob. Chemother. 40: 393-399 https://doi.org/10.1093/jac/40.3.393
  2. Barbosa, M. D., G. Yang, J. Fang, M. G. Kurilla, and D. L. Pompliano. 2002. Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob. Agents Chemother. 46: 943-946 https://doi.org/10.1128/AAC.46.4.943-946.2002
  3. Baskin, D. S., H. Ngo, and V. V. Didenko. 2003. Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol. Sci. 74: 361-368 https://doi.org/10.1093/toxsci/kfg126
  4. Baum, E. Z., D. A. Montenegro, L. Licata, I. Turchi, G. C. Webb, B. D. Foleno, and K. Buch. 2001. Identification and characterization of a new inhibitor of the Escherichia coli MurA enzyme. Antimicrob. Agents Chemother. 45: 3182-3188 https://doi.org/10.1128/AAC.45.11.3182-3188.2001
  5. Bernat, B. A., L. T. Laughlin, and R. N. Armstrong. 1997. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36: 3050-3055 https://doi.org/10.1021/bi963172a
  6. Brown, E. D., E. I. Vivas, C. T. Walsh, and R. Kolter. 1995. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 177: 4194-4197
  7. Bugg. T. D. and C. T. Walsh. 1992. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: Enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep. 9: 199-215 https://doi.org/10.1039/np9920900199
  8. Canetti, G., W. Fox, A. Khomenko, H. T. Mahler, N. K. Menon, D. A. Mitchison, N. Rist, and N. A. Smelev. 1969. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programs. Bull. World Health Organ. 41: 21-43
  9. Canetti, G., S. Froman, J. Grosset, P. Hauduroy, M. Langerova, H. T. Mahler, G. Meissner, D. A. Mitchison, and L. Sula. 1963. Mycobacteria laboratory methods for testing drug sensitivity and resistance. Bull. World Health Organ. 29: 565-578
  10. Clinical and Laboratory Standards Institute. 2006. Performance Standards for Antimicrobial Susceptibility Testing. Sixteenth Informational Supplement M100-S16, Wayne, Pa
  11. Du, W., J. R. Brown, D. R. Sylvester, J. Huang, A. F. Chalker, C. Y. So, D. J. Holmes, D. J. Payne, and N. G. Wallis. 2000. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J. Bacteriol. 182: 4146-4152 https://doi.org/10.1128/JB.182.15.4146-4152.2000
  12. Eschenburg, S., M. Priestman, and E. Schonbrunn. 2005. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J. Biol. Chem. 280: 3757-3763 https://doi.org/10.1074/jbc.M411325200
  13. Horii, T., T. Kimura, K. Sato, K. Shibayama, and M. Ohta. 1999. Emergence of fosfomycin-resistant isolates of Shiga-like toxinproducing Escherichia coli O26. Antimicrob. Agents Chemother. 43: 789-793
  14. Kahan, F. M., J. S. Kahan, P. J. Cassidy, and H. Kropp. 1974. Mechanism of action of fosfomycin (phosphonomycin). Ann. N. Y. Acad. Sci. 235: 364-386 https://doi.org/10.1111/j.1749-6632.1974.tb43277.x
  15. Kim, D. H., W. J. Lees, K. E. Kempsell, W. S. Lane, K. Duncan, and C. T. Walsh. 1996. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35: 4923-4928 https://doi.org/10.1021/bi952937w
  16. Marquardt, J. L., E. D. Brown, W. S. Lane, T. M. Haley, Y. Ichikawa, C.-H. Wong, and C. T. Walsh. 1994. Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNac enolpyruvyl transferase by the antibiotic fosfomycin. Biochemistry 33: 10646-10651 https://doi.org/10.1021/bi00201a011
  17. Marquardt, J. L., D. A. Siegele, R. Kolter, and C. T. Walsh. 1992. Cloning and sequencing of Escherichia coli mreZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174: 5748-5752
  18. Masumoto, H., R. Kissner, W. H. Koppenol, and H. Sies. 1996. Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Lett. 398: 179-182 https://doi.org/10.1016/S0014-5793(96)01237-9
  19. Molina-Lopez, J., F. Sanschagrin, and R. C. Levesque. 2006. A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: The first committed step in peptidoglycan biosynthesis. Peptides 27: 3115-3121 https://doi.org/10.1016/j.peptides.2006.08.023
  20. Nozawa, R., T. Yokoda, and T. Fujimoto. 1989. Susceptibility of methicillin-resistant Staphylococcus aureus to the seleniumcontaining compound 2-phenyl-1,2-benzoisoselenazol-3(2H)-one (PZ51). Antimicrob. Agents Chemother. 33: 1388-1390 https://doi.org/10.1128/AAC.33.8.1388
  21. Riddles, P. W., R. L. Blakeley, and B. Zerner. 1979. Elleman's reagent: 5,5' Dithiobis (2-nitrobenzoic acid) - a reexamination. Anal. Biochem. 94: 75-81 https://doi.org/10.1016/0003-2697(79)90792-9
  22. Schewe, T. 1995. Molecular actions of ebselen-an antiinflammatory antioxidant. Gen. Pharmacol. 26: 1153-1169 https://doi.org/10.1016/0306-3623(95)00003-J
  23. Schonbrunn, E., S. Schenburg, K. Luger, W. Kabsch, and N. Amrhein. 2000. Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc. Natl. Acad. Sci. U.S.A. 97: 6345-6349 https://doi.org/10.1073/pnas.120120397
  24. Schonbrunn, E., D. I. Svergun, N. Amrhein, and M. H. J. Koch. 1998. Studies on the conformational changes in the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamine enolpyruvyltransferase (MurA). Eur. J. Biochem. 253: 406-412 https://doi.org/10.1046/j.1432-1327.1998.2530406.x
  25. Sharma, V. K., J. S. Aulakh, and A. K. Malik. 2003. Thiram: Degradation, applications and analytical methods. J. Environ. Monit. 5: 717-723 https://doi.org/10.1039/b304710e
  26. Skarzynski, T., A. Mistry, A. Wonacott, S. E. Hutchinson, V. A. Kelly, and K. Duncan. 1996. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-Nacetylglucosamine and the drug fosfomycin. Structure 4: 1465-1474 https://doi.org/10.1016/S0969-2126(96)00153-0
  27. Yoon, H. J., M. J. Ku, H. J. Ahn, B. I. Lee, B. Mikami, and S. W. Suh. 2005. Crystallization and preliminary X-ray crystallographic analysis of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDP-Nacetylglucosamine and fosfomycin. Mol. Cells 19: 398-401
  28. Yoon, H. J., S. J. Lee, B. Mikami, H. J. Park, J. Yoo, and S. W. Suh. 2008. Crystal structure of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenza in complex with DSP-N-acetylglucosamine and fosfomycin. Proteins 71: 1032-1037 https://doi.org/10.1002/prot.21959

Cited by

  1. Peptidoglycan biosynthesis machinery: A rich source of drug targets vol.31, pp.4, 2009, https://doi.org/10.3109/07388551.2010.525498
  2. Kinetic Properties of Wild-type and C117D Mutant UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae vol.32, pp.8, 2009, https://doi.org/10.5012/bkcs.2011.32.8.2549
  3. UDP-N-acetylglucosamine enolpyruvyl transferase as a potential target for antibacterial chemotherapy: recent developments vol.92, pp.2, 2011, https://doi.org/10.1007/s00253-011-3512-z
  4. Potential therapeutic drug target identification in Community Acquired-Methicillin Resistant Staphylococcus aureus (CA-MRSA) using computational analysis vol.8, pp.14, 2009, https://doi.org/10.6026/97320630008664
  5. Synthesis and Anticancer Activity of 5-(1,2-Diselenolan-3-Yl)pentanoic Acid and its Derivatives vol.188, pp.10, 2009, https://doi.org/10.1080/10426507.2013.765425
  6. Identification of Novel Irreversible Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae vol.23, pp.3, 2013, https://doi.org/10.4014/jmb.1210.10053
  7. Synthesis of Some Monoselenolipoic Acid Derivatives and Their Biological Evaluation as Anticancer Agents vol.37, pp.5, 2009, https://doi.org/10.3184/174751913x13664642709897
  8. Resistance to antibiotics targeted to the bacterial cell wall : The Bacterial Cell Wall as a Target for Antibiotics vol.23, pp.3, 2009, https://doi.org/10.1002/pro.2414
  9. Synthetic Approaches to Organoselenium Derivatives with Antimicrobial and Anti-Biofilm Activity vol.16, pp.6, 2009, https://doi.org/10.2174/1570193x16666181227111038
  10. Analysis of xanthyletin and secondary metabolites from Pseudomonas stutzeri ST1302 and Klebsiella pneumoniae ST2501 against Pythium insidiosum vol.19, pp.None, 2009, https://doi.org/10.1186/s12866-019-1452-4
  11. Catalytic Mechanism and Covalent Inhibition of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): Implications to the Design of Novel Antibacterials vol.59, pp.12, 2009, https://doi.org/10.1021/acs.jcim.9b00691
  12. Antibacterial Agents Targeting the Bacterial Cell Wall vol.27, pp.None, 2009, https://doi.org/10.2174/0929867327666200128103653