메주로부터 분리한 항진균 및 항세균 활성의 Bacillus polyfermenticus CJ9

Bacillus polyfermenticus CJ9, Isolated from Meju, Showing Antifungal and Antibacterial Activities

  • 발행 : 2009.12.28

초록

메주로부터 항진균 및 항세균 활성을 나타내는 균주를 분리하고 동정하여 B. polyfermenticus CJ9로 명명하였다. B. polyfermenticus CJ9의 생육에 따른 항균 활성을 측정한 결과 항세균 활성은 배양 12시간에 최대 활성을 나타내며 72시간까지 90% 이상 활성을 유지하다 120시간에 활성을 완전히 상실하였다. 항진균 활성은 배양 24시간 이후부터 최대 활성을 나타내었고, 사멸기 이후 활성이 다소 감소되었으나 배양 120시간까지 활성이 유지되었다. B. polyfermenticus CJ9은 식품과 인체에 유해한 곰팡이, 효모, 그람 양성 및 음성 세균에 대한 항진균 활성과 항세균 활성을 동시에 나타내었다. B. polyfermenticus CJ9의 항세균 활성은 $37^{\circ}C$ 에서 24시간 열처리 후에 활성을 상실하였으며, pH 5.0~9.0 구간에서는 안정한 활성을 나타내었으나 pH 3.0~4.0 구간에서 활성이 감소하였다. 항진균 물질은 $121^{\circ}C$에서 15분간 열처리시 활성이 감소되었으나 역가가 완전히 소실되지 않았으며, pH 3.0~9.0 구간에서 안정한 활성을 나타내었다. 항세균 물질과 항진균 물질은 proteinase K, protease, trypsin, $\alpha$-chymotrypsin 등의 단백분해효소 처리로 역가를 상실하거나 일부 감소되어 단백질성 물질임을 추정하였다. B. polyfermenticus CJ9의 항세균 물질과 항진균 물질을 $C_{18}$ Sep-Pak column에 흡착된 분획으로부터 역가를 확인하여 소수성 물질임을 알 수 있었으며, Tricine-SDS-PAGE 및 direct detection 실험을 통하여 분자량을 확인한 결과 항진균 물질은 약 1.4 kDa의 물질임을 확인하였다. 그러나 항세균 활성 물질은 열 불안정성 때문에 동 실험법상에서 그 분자량을 확인할 수 없었다. B. polyfermenticus CJ9이 생산하는 항균 물질은 항세균 및 항진균 활성을 동시에 가지는 단백질성 물질로서 천연 식품보존제 및 정장제재로 활용이 기대되며, 이를 위하여 항세균 물질과 항진균 물질의 정제 및 구조분석 등의 연구가 필요하다.

A CJ9 bacterial strain, which showed antifungal and antibacterial activities, was isolated from meju and identified as Bacillus polyfermenticus based on Gram staining, biochemical properties, as well as its 16S rRNA sequence. B. polyfermenticus CJ9 showed the antimicrobial activity against the various pathogenic molds, yeasts, and bacteria. The antibacterial activity was stable in the pH 5.0~9.0, but the activity was lost at $37^{\circ}C$ for 24 hr. The antifungal activity was stable in the pH range of 3.0~9.0 and reduced at $121^{\circ}C$ for 15 min, but antifungal activity was not completely destroyed. The antibacterial activity was completely inactivated by proteinase K, protease, trypsin, and $\alpha$-chymotrypsin. The antifungal activity was also completely inactivated by protease and $\alpha$-chymotrypsin, and reduced its activity by proteinase which indicated that the antifungal and antibacterial compounds have proteineous nature. The apparent molecular mass of the partially purified antifungal compound, as indicated by using the direct detection method in Tricine-SDS-PAGE, was approximately 1.4 kDa. The molecular mass of the antibacterial compound could not be determined because of its heat-liable characteristic.

키워드

참고문헌

  1. Besson, F. and G. Michel. 1990. Mycosubtilins B and C:minor antibiotics from mycosubtilin-producer Bacillus subtilis. Microbios. 62: 93-99
  2. Besson, F., M. L. Hourdou, and G. Michel. 1990. Studies on the biosynthesis of iturin, an antibiotic of Bacillus subtilis, and a lipopeptide containing beta-hydroxy fatty acids. Biochim. Biophys. Acta. 1032: 101-106 https://doi.org/10.1016/0304-4165(90)90020-W
  3. Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl-polyacrylamide gel electrophoresis. J. Indust. Microbiol. 2: 319-322 https://doi.org/10.1007/BF01569434
  4. Chang, M. and H. C. Chang. 2006. Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC 6633. Kor. J. Microbiol. Biotechnol. 34: 221-227
  5. Chang, M. and H. C. Chang. 2007. Characteristics of Bacterial-Koji and Doenjang(soybean paste) Made by using Bacillus subtilis DJI. Kor. J. Microbiol. Biotechnol. 35: 325-333
  6. Duc, L. H. and S. M. Cutting. 2003. Bacterial spores as heat stable vaccine vehicles, pp. 1263-1270. Expert Opinion on Biological Therapy. School of Biological Sciences, Royal Holloway, University of London
  7. Eshita, S. M., N. H. Roberto, J. M. Beale, B. M. Mamiya, and R. F. Workman. 1995. Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J. Antibiot. 48: 1240-1247 https://doi.org/10.7164/antibiotics.48.1240
  8. Howell, S. F. 1950. Polypeptin, an antibiotic from a member of the Bacillus circulans group. II. Purification, crystallization, and properties of polypeptin. J. Biol. Chem. 186: 863-877
  9. http://www.bi-nex.com/(2001)
  10. http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi.(2006)
  11. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59: 171-200
  12. Jung, J. H. and H. C. Chang. 2009. Antifungal activity of Bacillus polyfermenticus CJ6 isolated from meju. J. Kor. Soc. Food Sci. Nutr. 38: 509-516 https://doi.org/10.3746/jkfn.2009.38.4.509
  13. Kang, J. S. 2004. Animals fodder for composition Bacillus polyfermenticus. Korean patent. 10-0458487
  14. Katz, E. and A. L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449-474
  15. Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/ response regulator system. Appl. Environ. Microbiol. 59: 296-303
  16. Kluge, B., J. Vater, J. Salnikow, and K. Eckart. 1998. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 231: 107-110 https://doi.org/10.1016/0014-5793(88)80712-9
  17. Kugler, M., W. Loeffler, C. Rapp, A. Kern, and G. Jung. 1990. Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties. Arch. Microbiol. 153: 276-281 https://doi.org/10.1007/BF00249082
  18. Kurylo-Borowska, Z. 1975. Biosynthesis of edeine: II. Localization of edeine synthetase within Bacillus brevis Vm4. Biochim. Biophys. Acta. 399: 31-41
  19. Lebbadi, M., A. Galvez, M. Maqueda, M. Martinez-Bueno, and E. Valdivia. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Bacteriol. 77: 49-53
  20. Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characcterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151 https://doi.org/10.1046/j.1472-765x.2001.00876.x
  21. Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology. 87: 151-174 https://doi.org/10.1016/0300-483X(94)90159-7
  22. Meyers, E., W. E. Brown, P. A. Principe, M. L. Rathnum, and W. L. Parker. 1973. EM49, a new peptide antibiotic. I. Fermentation, isolation, and preliminary characterization. J. Antibiot. 26: 444-448 https://doi.org/10.7164/antibiotics.26.444
  23. Newton, G. G. 1949. Antibiotics from a strain of B. subtilis; bacilipin A and B and bacilysin. Br. J. Exp. Pathol. 30: 306-319
  24. Omura, S., Y. Iwai, R. Masuma, M. Hayashi, T. Furusato, and T. Takagaki. 1980. A new peptide antibiotic, alboleutin. J. Antibiot. 33: 758-759 https://doi.org/10.7164/antibiotics.33.758
  25. Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial chaacterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Indust. Microbiol. Biotechnol. 19: 297-298 https://doi.org/10.1038/sj.jim.2900462
  26. Park, S. Y., Y. J. Yang, Y. B. Kim, J. H. Hong, and C. Lee. 2002. Characterization of Subtilein, a Bacteriocin from Bacillus subtilis CAU131(KCCM 10257). J. Microbiol. Biotechnol. 12: 228-234
  27. Peypoux, F., F. Besson, G. Michel, and L. Delcambe. 1981. Structure of bacillomycin D, a new antibiotic of the iturin group. Eur. J. Biochem. 118: 323-327 https://doi.org/10.1111/j.1432-1033.1981.tb06405.x
  28. Peypoux, F., M. T. Pommier, D. Marion, M. Ptak, B. C. Das, and G. Michel. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39: 636-641 https://doi.org/10.7164/antibiotics.39.636
  29. Schägger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  30. Shoji, J., R. Sakazaki, Y. Wakisaka, K. Koizumi, and M. Mayama. 1976. Isolation of brevistin, a new peptide antibiotic. Studies on antibiotics from the genus Bacillus. IX. J. Antibiot. 29: 375-379 https://doi.org/10.7164/antibiotics.29.375
  31. Sneath, P. H. A. 1986. Endospore-forming gram-positive rods and cocci, p. 1104-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's manual of systematic bacteriology. The Williams & Wilkins Company, Baltimore, Md
  32. Snoke, J. E. 1960. Formation of Bacitracin by washed cell suspensions of Bacillus licheniformis. J. Bacteriol. 80: 552-557
  33. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857 https://doi.org/10.1111/j.1365-2958.2005.04587.x
  34. Sun, L., Z. Lu, X. Bie, F. Lu, and S. Yang. 2006. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J. Microbiol. biotechnol. 22: 1259-1266 https://doi.org/10.1007/s11274-006-9170-0
  35. Tagg, J. R. and A. R. McGiven. 1971. Assay system for bacteriocin. Appl. Microbiol. 21: 943
  36. Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40: 722-56
  37. Tenoux, I., F. Besson, and G. Michel. 1991. Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester. Microbios. 67: 187-193
  38. Thomas, D. W. and T. Ito. 1969. The revised structure of the peptide antibiotic esperin, established by mass spectrometry. Tetrahedron. 25: 1985-1990 https://doi.org/10.1016/S0040-4020(01)82819-2
  39. Tsuge, K., T. Ano, and M. Shoda. 1995. Characterization of Bacillus subtilis YB8, coproducer of lipopeptides surfactin and plipastatin B1. J. Gen. Appl. Microbiol. 41: 541-545 https://doi.org/10.2323/jgam.41.541
  40. Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39: 888-901 https://doi.org/10.7164/antibiotics.39.888
  41. Winnick, R. E., H. Lis, and T. Winnick. 1961. Biosynthesis of gramicidin S. I. General characteristics of the process in growing cultures of Bacillus brevis. Biochim. Biophys. Acta. 49: 451-462 https://doi.org/10.1016/0006-3002(61)90242-6
  42. Yoon, J. H., S. T. Lee, and Y. H. Park. 1996. Inter- and intraspecific phylogenic analysis of the genes Nocardioides and related taxa based on 16s rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194 https://doi.org/10.1099/00207713-48-1-187
  43. Zheng, G. and M. E. Slavik. 1999. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett. Appl. Microbiol. 28: 363-367 https://doi.org/10.1046/j.1365-2672.1999.00545.x