식품병원성 곰팡이 성장을 저해하는 방선균 Streptomyces griseofuscus CNU-A91231의 분리 및 배지 조성

Isolation and Medium Development of the Actinomycetes, Streptomyces griseofuscus CNU-A91231, Inhibiting Phytopathogenic Fungi

  • Choi, Seung-Hyun (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Son, Min-Jung (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Sung-Han (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Choi, Suk-Yul (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Yoon-Hui (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Choi, Jae-Eul (Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • An, Gil-Hwan (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
  • 발행 : 2009.12.28

초록

Actinomycetes 500계통 중 식물병원성 곰팡이(Alternaria alternata, Botryotinia fuckeliana, Colletotrichum acutatum, Colletotrichum gleosporioides, Corticium sasaki, Cylindrocarpon destructans, Fusarium oxysporium, Magnaporthe grisea, Phytophthora infestans, Phytium ultimum, Thanatephorus cucumeri)저해하는 균주를 선발하였다. CNU-A91231(Korea Agricultural Culture Collection #20938)이 식물병원성 곰팡이에 대한 억제 활성이 강한 것으로 나타났으며 16s rDNA sequence를 통해 Streptomyces griseofuscus로 동정 하였다. S. griseofuscus CNUA91231의 효율적인 배양을 위해 간단하고 실용적인 배지를 개발하였다. 이 균주의 최적 성장조건은 28, pH 6에서 aeration 조건이었다. Alanine, glutamine, proline, ammonium ion은 좋은 질소원이었다. 당밀에 Na, Cl, Ca, P, K, Mg를 첨가하였을 때는 S. griseofuscus.의 성장을 증가시키지 못하였다. 아미노산을 함유한 비료를 사용하였을 때 이 균주의 성장을 증가시켰다. 최적의 배지로서 당밀 + 1% glutamate 부산물 분말로 결정하였다. 최적 배지에서 S. griseofuscus의 배양은 이 균주의 antifungal 활성에 영향을 주지 않았다. 본 연구에서 연구된 bacterium과 배지가 작물재배에 생물학적 항 곰팡이 제재로 이용될 것으로 기대된다.

Five hundred strains of actinomycetes were screened for inhibitory activity against the phytopathogenic fungi; Alternaria alternata, Botryotinia fuckeliana, Colletotrichum acutatum, Colletotrichum gleosporioides, Corticium sasaki, Cylindrocarpon destructans, Fusarium oxysporium, Magnaporthe grisea, Phytophthora infestans, Phytium ultimum, and Thanatephorus cucumeris. The strain CNU-A91231 (Korea Agricultural Culture Collection #20938) showed a strong activity against the phytopathogenic fungi and it was identified as Streptomyces griseofuscus based on the sequence of 16s rDNA. Practical and simple media for the strain S. griseofuscus CNU-A91231 was developed at the conditions ($28^{\circ}C$ and pH 6 with aeration) for efficient bacterial growth. Alanine, glutamine, proline and ammonium ion were good nitrogen sources for the bacterium. Addition of the major salts including Na, Cl, Ca, P, K, and Mg into molasses did not increase the growth of S. griseofuscus. Addition of fertilizers containing amino acids significantly enhanced growth of the bacterium. The optimal medium was formulated as molasses + 1% of glutamate fermentation waste powder. All the conditions and components used in this study did not affect the antifungal activity of S. griseofuscus. The bacterium and the medium in this study can be used as a bio-antifungal agent for plant farming.

키워드

참고문헌

  1. Agrios, G. N. 1997. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, U.S.A
  2. An, G. H., B. G. Jang, and M. H. Cho. 2001. Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses. J. Biosci. Bioeng. 92: 121-125 https://doi.org/10.1263/jbb.92.121
  3. AOAC. 1995. Official Method of Analysis. 16th ed., The Assn. of Ofiic. Anal. Chem., Washington D.C., U.S.A
  4. Bradford, M. M. 1976. A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Demain, A. l. and N. A. Solomon. 1986. Manual of industrial microbiology and biotechnology, pp. 216-263. American society for Microbiology, Washington D.C., NY, U.S.A
  6. Gabriele, S. M., M. Rosselli, and B. Imthurn. 2008. Comparison of two procedures for routine IUD exchange in woman with positive Pap smears for actinomyces-like organisms. Contraception. 77: 177-180 https://doi.org/10.1016/j.contraception.2007.11.007
  7. Hur, Y. A., S. S. Choi, Y. K. Chang, S. K. Hong, and E. S. Kim. 2007. Solid medium pH-dependent antifungal activity of Streptomyces sp. producing an immunosuppressant tautomycetin. Kor. J. Microbiol. Biotechnol. 35: 26-29
  8. Idris, H. A., Labuschagne N., and Korsten L. 2008. Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biol. Control. 45: 72-84 https://doi.org/10.1016/j.biocontrol.2007.11.004
  9. Justen, A. F., D. Yohalem, A. Bay, and M. Nicolaisen. 2003. Genetic diversity in potato field populations of Thanatephorus cucumeris AG-3, revealed by ITS polymorphism and RAPD markers. Mycol. Res. 107: 1323-1331 https://doi.org/10.1017/S0953756203008517
  10. Kernaghan, G., R. D. Reeleder, and S. M. T. Hoke. 2007. Quantification of Cylindrocarpon destructans f. sp. panacis in soils by real-time PCR. Plant Pathol. 56: 508-516 https://doi.org/10.1111/j.1365-3059.2006.01559.x
  11. Kin, S. L. 2006. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol. 8: 245-251 https://doi.org/10.1016/j.mib.2006.03.004
  12. Leroux, P., F. Chapeland, D. Desbrosses, and M. Gredt. 1999. Patterns of cross-resistance to fungicides in Botryyotinia fuckeliana(Botrytis cinerea) isolates from French vineyards. Crop Prot. 18: 687-697 https://doi.org/10.1016/S0261-2194(99)00074-5
  13. Mounier, J., M. C. Rea, P. M. O'Connor, G. F. Fitzgerald, and T. M. Cogan. 2007. Growth Characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. Isolated from Surface-Ripened Cheese. Appl. Environ Microbiol. 73: 7732-7739 https://doi.org/10.1128/AEM.01260-07
  14. Park, C. S. 1984. Effects of soil solarization for control of cucumber wilt. Kor. J. Plant Prot. 23: 22-27
  15. Reuveni, M. 2006. Inhibition of germination and growth of Alternaria alternate and mouldy-core development in red delicious apple fruit by bromuconazole and sygnum. Crop Prot. 25: 253-258 https://doi.org/10.1016/j.cropro.2005.04.016
  16. Ripoche, A., G. Jacqua, F. Bussiere, S. Guyader, and J. Sierra. 2008. Survival of Colletotrichum gloeosporioides (casual agent of yam anthracnose) on yam residues decomposing in soil. Appl. Soil Ecol. 38: 270-278 https://doi.org/10.1016/j.apsoil.2007.10.015
  17. Sharma, A., V. Vivekanand, and R. P. Singh. 2008. Solidstate fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support. Bioreso. Technol. 99: 3444-3450 https://doi.org/10.1016/j.biortech.2007.08.006
  18. Skottup, P., M. Nicolaisen, and A. F. Justesen. 2007. Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J. Microbiol. Methods 68: 507-515 https://doi.org/10.1016/j.mimet.2006.10.011
  19. Sonawane, A. M., B. Singh, and K. H. Rohm. 2006. The AauR-AauS Two-Component System Regulates Uptake and Metabolism of Acidic Amino Acids in Pseudomonas putida. Appl. Environ. Microbiol. 72: 6569-6577 https://doi.org/10.1128/AEM.00830-06
  20. Tongen, A., A. Goriely, and M. Tabor. 2006. Biomechanical model for appressorial design in Magnaporthe grisea. J. Theor. Biol. 240: 1-8 https://doi.org/10.1016/j.jtbi.2005.08.014
  21. Wang, Y., B. Yihong, D. Shen, W. Feng, T. Yu, Z. Jia, and X. D. Zheng. 2008. Biocontrol of Alternaria alternate on cherry tomato fruit by use of marine yeast Rhodosporidium paludigenum Fell and Tallman. Int. J. Food. Microbiol. doi:10.1016/j.ijfoodmicro.2008.02.002