Isolation of Chondromyces crocatus in Pure Culture

Chondromyces crocatus의 순수 분리

  • Lee, Cha-Yul (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Hyun, Hye-Sook (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Kim, Do-Hee (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Cho, Kung-Yun (Myxobacteria Bank, Department of Biotechnology, Hoseo University)
  • 이차율 (호서대학교 생명공학과 점액세균은행) ;
  • 현혜숙 (호서대학교 생명공학과 점액세균은행) ;
  • 김도희 (호서대학교 생명공학과 점액세균은행) ;
  • 조경연 (호서대학교 생명공학과 점액세균은행)
  • Published : 2009.12.28

Abstract

We have isolated Chondromyces crocatus KYC2823 in pure culture and five other strains in mixed culture with companion bacteria from Korean soil samples. The strain KYC2823, which was isolated from the soil sample collected in Cheongdo-gun, Gyeongsangbuk-do, showed typical characteristics of C. crocatus, including the shape of fruiting bodies and production of a peculiar odor. In addition, the 16S rDNA sequence was 99.8% identical to that of the strain Cm c5, the proposed neotype strain of C. crocatus. Cloning and sequence analysis of the polyketide biosynthetic genes from KYC2823 by performing PCR have revealed that this strain has biosynthetic gene clusters for ajudazols (inhibitors of electron transport systems) and chondramides (substances affecting the function of the actin cytoskeleton), and biosynthetic genes for other polyketide compounds that have not been cloned yet.

국내 토양으로부터 Chondromyces crocatus KYC2823을 순수 분리하고, 또 다른 5균주를 동반 세균이 함께 존재하는 상태로 분리하였다. 균주 KYC2823은 경북 청도군에서 채취한 토양시료에서 분리하였으며, 자실체 형태와 특이한 향의 발산을 포함한 여러 특성이 전형적인 C. crocatus임을 보였다. 이에 더해, 16S rDNA 염기서열이 C. crocatus의 새 표준균주로 제안된 Cm c5과 99.8% 유사하였다. 한편, PCR을 이용한 polyketide 생합성 유전자 조각의 클로닝 및 분석은 균주 KYC2823이 전자전달계 저해물질인 ajudazol과 actin cytoskeleton의 기능에 영향을 미치는 물질인 chondramide의 생합성 유전자, 그리고 아직까지 클로닝되지 않은 polyketide 계열 물질의 생합성 유전자를 가지고 있음을 보여주었다.

Keywords

References

  1. Buntin, K., S. Rachid, M. Scharfe, H. Blocker, K. J. Weissman, and R. Müller. 2008. Production of the antifungal isochromanone ajudazols A and B in Chondromyces crocatus Cm c5: biosynthetic machinery and cytochrome P450 modifications. Angew. Chem. Int. Ed. Engl. 47: 4595-4599 https://doi.org/10.1002/anie.200705569
  2. Casadaban, M. J. 1976. Transposition and fusion of the lac genes for selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104: 541-555 https://doi.org/10.1016/0022-2836(76)90119-4
  3. Gerth, K., S. Pradellaa, O. Perlova, S. Beyer, and R. Muller. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities―past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotech. 106: 233-253 https://doi.org/10.1016/j.jbiotec.2003.07.015
  4. Grilione, P. L. and J. Pangborn. 1975. Scanning electron microscopy of fruiting body formation by myxobacteria. J. Bacteriol. 124: 1558-1565
  5. Jacobi, C. A., B. Aßmus, H. Reichenbach, and E. Stakebrandt. 1997. Molecular evidence for association between the Sphingobacterium-like organism 'Candidatus comitans' and the myxobacterium Chondromyces crocatus. Appl. Environ. Microbiol. 63: 719-723
  6. Jacobi, C. A., H. Reichenbach, B. J. Tindall, and E. Stakebrandt. 1996. 'Candidatus comitans,' a bacterium living in coculture with Chondromyces crocatus (myxobacteria). Int. J. Syst. Bacteriol. 46: 119-122 https://doi.org/10.1099/00207713-46-1-119
  7. Jansen, R., B. Kunze, H. Reichenbach, and G. Hofle. 2003. Chondrochloren A and B, new beta-amino styrenes from Chondromyces crocatus (myxobacteria). Eur. J. Org. Chem. 2003: 2684-2689 https://doi.org/10.1002/ejoc.200200699
  8. Kim, Y. S., W. C. Bae, and S. J. Back. 2003. Bioactive substances from myxobacteria. Kor. J. Microbiol. Biotechnol. 31: 1-12
  9. Komaki, H., R. Fudou, T. Iizuka, D. Nakajima, K. Okazaki, D. Shibata, M. Ojika, and S. Harayama. 2008. PCR detection of type I polyketide synthase genes in myxobacteria. Appl. Environ. Microbiol. 74: 5571-5574 https://doi.org/10.1128/AEM.00224-08
  10. Kunze, B., R. Jansen, G. Hofle, and H. Reichenbach, H. 2004. Ajudazols, new inhibitors of the mitochondrial electron transport from Chondromyces crocatus. Production, antimicrobial activity and mechanism of action. J. Antibiot. 57: 151-155
  11. Kunze, B., R. Jansen, F. Sasse, G. Hofle, and H. Reichenbach. 1995. Chondramides A approximately D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. 48: 1262-1266 https://doi.org/10.7164/antibiotics.48.1262
  12. Kunze, B., R. Jansen, G. Hofle, and H. Reichenbach. 1994. Crocacin, a new electron transport inhibitor from Chondromyces crocatus (myxobacteria). Production, isolation, physico- chemical and biological properties. J. Antibiot. 47: 881-886
  13. Rachid, S., D. Krug, B. Kunze, I. Kochems, M. Scharfe, T. M. Zabriskie, H. Blocker, and R. Muller. 2006. Molecular and biochemical studies of chondromide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5. Chem. Biol. 14: 667-681
  14. Rachid, S., M. Scharfe, H. Blocker, K. J. Weissman, and R. Muller. 2009. Unusual chemistry in the biosynthesis of the antibiotic chondrochlorens. Chem. Biol. 16: 70-81 https://doi.org/10.1016/j.chembiol.2008.11.005
  15. Rainey, F. A., N. Ward-Rainey, R. M. Kroppenstedt, and E. Stackerbrandt. 1996. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 46: 1088-1092 https://doi.org/10.1099/00207713-46-4-1088
  16. Reichenbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbial. Biotechnol. 27: 9-156 https://doi.org/10.1038/sj.jim.7000025
  17. Reichenbach, H. 2005. Myxococcales. pp. 1059-1144. In Brenner, D. J., N. R. Krieg, J. T. Staley, and G. M. Garrity (ed.), Bergey's Manual of Systematic Bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI, USA
  18. Reichenbach, H. and M. Dworkin. 1992. The myxobacteria, pp. 3416-3487. In Balows, A., G. Trper, M. Dworkin, W. Harder, and K. -H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. IV, Springer Verlag, NY, USA
  19. Sasse, F., B. Kunze, T. M. Gronewold, and H. Reichenbach. 1998. The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J. Natl. Cancer Inst. 90: 1559-1563 https://doi.org/10.1093/jnci/90.20.1559
  20. Spröer, C., H. Reichenbach, and E. Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 3: 1255-1262 https://doi.org/10.1099/00207713-49-3-1255
  21. Steinmetz, H., H. Irschik, B. Kunze, H. Reichenbach, G. Höfle, and R. Jansen. 2007. Thuggacins, macrolide antibiotics active against Mycobacterium tuberculosis: isolation from myxobacteria, structure elucidation, conformation analysis and biosynthesis. Chemistry 13: 5822-5832 https://doi.org/10.1002/chem.200700269
  22. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  23. Weissman, K. J. and R. Müller. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17: 2121-2136 https://doi.org/10.1016/j.bmc.2008.11.025