참고문헌
- R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485–488. https://doi.org/10.1215/S0012-7094-45-01243-9
- R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489–507. https://doi.org/10.1215/S0012-7094-45-01244-0
-
R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to
$L_2$ over the space Ć, Duke Math. J. 14 (1947), 99–107. https://doi.org/10.1215/S0012-7094-47-01409-9 - R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math. 48 (1947), 385–392. https://doi.org/10.2307/1969178
-
R. H. Cameron and D. A. Storvick, An
$L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), no. 1, 1–30. https://doi.org/10.1307/mmj/1029001617 - K. S. Chang, B. S. Kim, and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000), no. 1-2, 97–105. https://doi.org/10.1080/01630560008816942
- S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26 (1996), no. 1, 37–62. https://doi.org/10.1216/rmjm/1181072102
- S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925–2948. https://doi.org/10.1090/S0002-9947-03-03256-2
- S. J. Chang and D. L. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375–393. https://doi.org/10.1080/1065246031000074425
-
B. S. Kim and D. Skoug, Integral transforms of functionals in
$L_{2}$ ($C_{0}$ [0, T]), Rocky Mountain J. Math. 33 (2003), no. 4, 1379–1393. https://doi.org/10.1216/rmjm/1181075469 - Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), no. 2, 153–164. https://doi.org/10.1016/0022-1236(82)90103-3
-
Y. J. Lee, Unitary operators on the space of
$L^2$ -functions over abstract Wiener spaces, Soochow J. Math. 13 (1987), no. 2, 165–174. - D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), no. 3, 1147–1175. https://doi.org/10.1216/rmjm/1181069848
- E. Nelson, Dynamical Theories of Brownian Motion (2nd edition), Math. Notes, Princeton University Press, Princeton, 1967.
- J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.
- J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971), 37–46.
피인용 문헌
- Relationships Involving Transforms and Convolutions Via the Translation Theorem vol.32, pp.2, 2014, https://doi.org/10.1080/07362994.2013.877350
- SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL vol.19, pp.2, 2012, https://doi.org/10.7468/jksmeb.2012.19.2.87
- REFLECTION PRINCIPLES FOR GENERAL WIENER FUNCTION SPACES vol.50, pp.3, 2013, https://doi.org/10.4134/JKMS.2013.50.3.607
- Some basic relationships among transforms, convolution products, first variations and inverse transforms vol.11, pp.3, 2013, https://doi.org/10.2478/s11533-012-0148-x
- Self-adjoint oscillator operator from a modified factorization vol.375, pp.22, 2011, https://doi.org/10.1016/j.physleta.2011.04.012
- Generalized conditional transform with respect to the Gaussian process on function space vol.26, pp.12, 2015, https://doi.org/10.1080/10652469.2015.1070149
- generalized analytic Fourier–Feynman transform vol.29, pp.9, 2018, https://doi.org/10.1080/10652469.2018.1497024