DOI QR코드

DOI QR Code

LANDSAT-5 TM 영상의 대기보정에 따른 클래스별 화소값 분포 변화 비교

Comparison of Digital Number Distribution Changes of Each Class according to Atmospheric Correction in LANDSAT-5 TM

  • 정태웅 (건국대학교 신기술융합학과) ;
  • 어양담 (건국대학교 신기술융합학과) ;
  • 김태렬 (건국대학교 신기술융합학과) ;
  • 임상범 (건국대학교 신기술융합학과) ;
  • 박두열 (중앙항업) ;
  • 박황수 (건국대학교 신기술융합학과) ;
  • 박명학 (건국대학교 신기술융합학과) ;
  • 박완용 (국방과학연구소)
  • Jung, Tae-Woong (Department of Advanced Technology Fusion, Konkuk University) ;
  • Eo, Yang-Dam (Department of Advanced Technology Fusion, Konkuk University) ;
  • Jin, Tailie (Department of Advanced Technology Fusion, Konkuk University) ;
  • Lim, Sang-Boem (Department of Advanced Technology Fusion, Konkuk University) ;
  • Park, Doo-Youl (Chung-Ang Aerosurvey Co. Ltd.) ;
  • Park, Hwang-Soo (Department of Advanced Technology Fusion, Konkuk University) ;
  • Piao, Minghe (Department of Advanced Technology Fusion, Konkuk University) ;
  • Park, Wan-Yong (Agency for Defense Development)
  • 발행 : 2009.02.28

초록

우리나라는 황사발생 빈도가 증가하고 특히 하절기에 강우 및 구름 발생이 잦아 위성원격탐사영상의 대기보정처리를 필요로 한다. 본 연구에서는 대기보정 전후의 클래스별 화소값 분포 변화를 비교하여 대기보정이 영상화소분류에 미치는 영향을 분석하였다. 실험에 사용된 영상은 LANDSAT-5 TM이고, 대기보정 모듈로는 상용 소프트웨어인 ATCOR, FLAASH와 인터넷에 공개된 COST 모델 3가지를 적용하였다. 실험 결과, 건물밀집 지역 영역에서 클래스 분리도가 향상되는 것으로 나타났다.

Due to increasing frequency of yellow dust, not to mention high rate of precipitation and cloud formation in summer season of Korea, atmospheric correction of satellite remote sensing is necessary. This research analyzes the effect of atmospheric correction has on imagery classification by comparing DN distribution before and after atmospheric correction. The image used in the research is LANDSAT-5 TM. As for atmospheric correction module, commercial product ATCOR, FLAASH as well as COST model released on the internet, were used. The result of experiment shows that class separability increased in building areas.

키워드

참고문헌

  1. 유복모, 1991. 사진측정학, 문운당
  2. 이광재, 김용승, 2005. 다중분광 자료를 이용한 영상기반의 대기보정 연구, KARI, Korea Aerospace Research Institute, 4(1): 211-220
  3. 이용웅, 어양담, 박완용, 서병준, 송현승, 유향미, 2004. VITD 규격분석, TEDC-508-040353, 국방과학연구소
  4. 최준혁, 이지선, 김정호, 이성호, 김태국, 2008. 대기온도 및 풍속 변화에 따른 함정의 적외선 신호 특성 분석, 한국군사과학기술학회지, 11(5): 84-91
  5. Acharya, P. K., A. Berk, G. P. Anderson, N. F. Larsen, S. C. Tsay, and K. H. Stammes, 1999. MODTRAN4: Multiple Scattering and Bidirectional Distribution Function(BRDF) Upgardes to MODTRAN, Proceeding of SPIE, Optical Spectroscopy Techniques and Instrumentation of Atmospheric and Space Research, Vol. 3756 https://doi.org/10.1117/12.366389
  6. Chander, G. and B. Markham, 2003. Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges, IGARSS, 41(1): 2674-2677 https://doi.org/10.1109/TGRS.2003.818464
  7. Chavez, P. S., Jr., 1996. Image-Based Atmospheric Corrections Revisited and Improved, PE&RS, 62(9): 1285-1294
  8. Song, C., E. W. Curtis, C. S. Karen, P. L. Mary, and A. M. Scott, 2001. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?, Remote Sensing of Environment, 75: 230-244 https://doi.org/10.1016/S0034-4257(00)00169-3
  9. Eckhardt, D. W., J. P. Verdin, and G. R. Lyford, 1990. Automated update of and irrigated Lands GIS using SPOT HRV Imagery, PE&RS, 56(11): 1515-1522
  10. Eo, Y. D., G. W. Lee, D. Y. Park, W. Y. Park, and C. N. Lee, 2008. Supervised Classification Using Training Parameters and Prior Probability Generated from VITD, Korean Journal of Remote Sensing, 24(5): 517-524 https://doi.org/10.7780/kjrs.2008.24.5.517
  11. Hall, F. G., D. E. Strebel, J. E. Nickeson, and S. J. Goetz, 1991. Radiometric Rectification: Toward a Common Radiometric Response among Multidate, Multisensor Images, Remote Sensing of Environment, 35(1): 11-27 https://doi.org/10.1016/0034-4257(91)90062-B
  12. Kim, Y. S. and G. W. Lee, 2005. An Experimental Study on the Image-based Atmospheric Correction Method for High Resolution Multispectral Data, IGARSS '05. Proceedings: 434-436
  13. Oh, S. N., 2004. A Study on Atmospheric Correction in Satellite Imagery Using an Atmospheric Radiation Model, Atmosphere, 14(2): 11-22
  14. Moran, S., R. D. Jackson, P. N. Slater, and P. M. Teillet, 1992. Evaluation of Simplified procedures for Retrieval of Land Surface Reflectance Factors from Satellite Sensor Output, Remote Sensing of Environment, 41: 169-184 https://doi.org/10.1016/0034-4257(92)90076-V
  15. Swain, P. H. and S. M. Davis, 1978. Remote Sensing: The Quantitative Approach, McGraw-Hill, Inc., New York, N.Y.: 170-171
  16. Lillesand, T. M. and R. W. Kiefer, 1987. Remote Sensing and Image Interpretation, John Wiley and Sons, New York, USA
  17. Kawata, Y., T. Kusaka, and S. Ueno, 1990. Classification Accuracy for the MOS-1 MESSR Data Before and After the Atmospheric Correction, IEEE Transactions on Geoscience and Remote Sensing, 28(4): 755-760 https://doi.org/10.1109/TGRS.1990.573015